Search published articles


Showing 2 results for Antifungal Activity

Elaheh Zadeh-Hosseingholi, Nader Chaparzadeh, Samira Mahmudi Aghdam,
Volume 6, Issue 4 (12-2019)
Abstract

Some rhizobacteria have positive effects on plants growth. Syrian bean-caper (Zygophyllum fabago) is a weed plant with medicinal value. This study was conducted to isolate and identify bacteria from Syrian bean-caper rhizosphere. Characteristics associated with plant growth stimulation, such as phosphate and zinc dissolution, production of Indole acetic acid and antifungal activity, were investigated. The isolates were separately inoculated to the plant and after plant root establishment was ensured, their effectiveness in increasing plant growth in greenhouse conditions was measured. Biochemical and molecular identification results showed that five isolates belonged to the genera Bacillus, Pseudomonas, Pantoea, and Brevibacterium. All five isolates showed some degree of plant growth promotion capabilities. Among the isolates, only the genus Bacillus increased the dry weights of plants significantly. The amount of phosphate solubilization for this isolate was 440 μg ml-1 and its acid production in the culture medium was higher than that in other isolates. The isolate had zinc solubilisation capability and produced 3.89 mg ml-1 indole acetic acid. However, this isolate did not show antifungal activity against two fungal pathogens of Aspergillus niger and Botrytis cinerea.  
 
 
 
Sogol Tavanaeian, Javad Hamedi, Setareh Haghighat,
Volume 7, Issue 1 (4-2020)
Abstract

Exopolymers (EPS) are high-molecular-weight polymers secreted by some micro-organisms and have several applications in food, pharmaceutical, packaging and agricultural industries, as well as medicine. Actinobacteria are valuable bacteria in biotechnology and many commercial drugs such as antibiotics, antioxidants and immune-suppressant agents are derived from Actinobacteria. Recently, their other capabilities such as exopolymer production have been taken into consideration. Due to the high potential of actinobacteria in producing various compounds and increased prevalence of infections by antibiotic-resistant pathogens, the aim of the present study was to evaluate the potential of isolated Actinobacteria from various locations of Iran to produce EPS with antimicrobial activity. Appropriate dilutions of the samples were, therefore, cultured in ISP2 medium after treatment. The isolates were primarily identified by morphological tests. Then, their ability to produce EPS was investigated in BHI medium with 5% sucrose. The exopolymers of the most efficient strain were analyzed by UV-visible spectroscopy and FT-IR. Finally, the most efficient isolate was molecularly identified. Of the 120 isolates, 38 were able to produce EPS, and six had significant capability of producing EPS (10-14 g/L) and showed antibiotic activity against Staphylococcus aureus, Bacillus subtilis and Aspergillus niger. The EPS of the strain So49 had high absorbance in 190-230 nm, but did not have absorbance in 260-280 nm. Therefore, it does not have any protein impurity. The EPS has hydroxyl and carboxyl functional groups, according to FT-IR analysis. 16S rRNA gene analysis showed that the most efficient isolate had 99.68% similarity to Promicromonospora xylanilytica. 


 

Page 1 from 1     

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb