Search published articles


Showing 2 results for Biosynthesis

Mohsen Fatemi, Nasrin Mollania, Madjid Momeni-Moghaddam, Fatemeh Sadeghifar,
Volume 6, Issue 1 (5-2019)
Abstract

New properties of nano-materials have made nanotechnology the leading part of biology and medical sciences. Due to their various biomedical properties, iron-based magnetic nanoparticles (MNPs) have been highly considered by biological researchers. Nowadays, increasing resistance to antibiotics is a major problem in treating clinical infections. Finding new antibacterial agents is therefore essential for the treatment of resistant strains. In this study, the iron oxide MNPs were produced using culture-medium supernatant of a newly isolated bacterium to investigate the inhibitory effects of the NPs on strains with a major role in clinical infections. Biosynthesis of iron oxide MNPs were detected by UV-Vis spectroscopy and the average size of particles was estimated by dynamic light scattering technique. The anti-bacterial activity of these NPs against E. coli and S. aureus was investigated using methods for the calculation of bacterial sensitivity coefficient. In the presence of NPs, the highest sensitivity coefficient value was observed for E. coli in 1xMIC concentration. On the other hand, S. aureus showed the lowest value. The death rate of the two strains in contact with NPs followed the first order kinetic equation and the survival rate decreased with the increase of exposure time. The results of this study as well as the high functionality of iron oxide MNPs, make its application desirable in the prevention and treatment of clinical infections.

 


Neshat Soosani, Morahem Ashengroph, ,
Volume 8, Issue 3 (10-2021)
Abstract

The biosynthesis of nanoparticles (NPs) has been proposed due to its fast, clean, safe, and cost-effective production and being efficient alternative to conventional physicochemical methods. This study aimed to isolate and identify aquatic yeast strains for their potential to form Zinc oxide nanoparticles (ZnONPs). A yeast strain, NS02, with high tolerance against zinc ion (5.25 mM) was isolated using the enrichment technique and was selected as efficient candidate for the biosynthesis of ZnONPs under cell-free extract (CFE) strategy. The preliminary evaluation on the formation of ZnONPs was performed by visual observation and UV-visible absorption spectra of the biosynthesized ZnONPs. The morphology, size and elemental distribution of the nanoparticles were determined by Field emission scanning electron microscopy (FESEM) equipped with energy-dispersive X-ray (EDX). X-ray diffractometer (XRD) was used to identify the crystalline phase of the ZnONPs. Antibacterial activity of ZnONPs against pathogenic bacteria isolated from the clinical specimens was investigated using agar well diffusion method. The isolate NS02 was characterized based on their morphological properties and amplification the ITS-5.8S-ITS2 rDNA regions. The present study pioneered the capabilities of the native aquatic strain Rhodotorula pacifica for the extracellular synthesis of ZnONPs with CFE strategy. The biosynthesized ZnONPs had a growth inhibitory effect all tested clinical isolates due to their nanometric size and well-defined dispersity. This investigation is attempted to indicate the novel microbial sources of aquatic yeasts as biological plant in the synthesis of ZnONPs with antimicrobial activity under cell-free extract strategy.
 



Page 1 from 1     

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb