Search published articles


Showing 2 results for Explant

Reza Norouzi1, Mesbah Babalar, Masoud Mirmasoumi3 ,
Volume 4, Issue 2 (9-2017)
Abstract

Hairy root induction in plants is the result of the insertion of T-DNA from Agrobacterium rhizogenes into the plant genome. The present study was conducted to investigate the effect of bacterium strain and plant species type on hairy root induction in two endemic (Salvia eremophila and S. reuterana) and five non-endemic (S. macrosiphon, S. multicaulis, S. nemorosa, S. verticellata and S. virigata) Salvia by four bacteria strains including 1724, 2659, ATCC-15834 and A4. Petiole and stem explants were not capable of inducing hairy roots, while almost all leaf segments produced it. Confirmatory studies were carried out by direct detection of inserted rol C by the PCR. The results showed that different Agrobacterium rhizogenes strain and Salvia spices had significant effect on hairy roots number and frequency. The infection of S. macrosiphon via A. rhizogenes strain ATCC15834 showed the highest number of infe-cted roots per explant (5.12 hairy roots) and root frequency (82%). The highest number of hairy root per explant in S. eremophila (3.32 hairy roots) and S. reuterana (3.92 hairy roots) were achieved by inoculation with strain A4. Strain 2659 produced the highest hairy roots number in S. nemorosa (2.6 hairy roots), S. multicaulis (4.36 hairy roots) and S. verticillata (5 hairy roots). Also hairy roots formation occurred at the highest number in S. virigata (3 hairy roots) with infection by strain ATCC15834.
َamjad Saedi, Hossein Moradi, Mahnaz Karimi,
Volume 6, Issue 4 (12-2019)
Abstract

Aloe vera L. is one of the most valuable plants in the pharmaceutical, cosmetic, sanitary and food industries. In vitro culture is used for commercial production and due to the abundant application of this plant, extensive research has been performed on the in vitro culture of Aloe vera. For this purpose, the present study was conducted at two stages. At the first stage, the best method of sterilization of explants derived from Aloe vera offshoots was investigated. At the second stage, the effect of the type of explants, the light condition (dark and bright) and the effect of BAP (Benzyl Amino Purine) and NAA (α-Naphthalene acetic acid)) growth regulators on regeneration and the amount of phenolic compounds were studied. A factorial experiment was executed on the basis of a completely randomized design with three replications. The best sterilization protocol was 0.1% mercuric chloride (for 2 minutes), 70% ethanol (for 30 seconds) and 15% sodium hypochlorite (for 5 minutes). The little white explant derived from the base of leaves, with the lowest percentage of phenol and the highest survival rate (67.5%) in darkness, was found to be the best candidate. MS medium supplemented with 0.75 mg / L BAP and 0.25 mg / L NAA resulted in the highest stem number (2.5) and stem length (42.107 mm), establishment percentage (73%), leaf number (6.33), leaf diameter (4.8 mm), chlorophyll b (9.216 mg/g) and carotenoids (4.81 mg/g). The highest content of chlorophyll a (56.07 mg/g) and total chlorophyll (61.35 mg/g) were found in samples treated with hormonal medium, supplemented with 1.5 mg / L of BAP with 0.5 mg / L of NAA. The maximum number (3) and average length (33.3 mm) of roots were observed in samples treated with the hormone-free medium.
 


Page 1 from 1     

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb