Search published articles


Showing 2 results for Hydrogen Peroxide

Nader Chaparzadeh, Roya Saeedifar, Leila Zarandi-Miandoab , Mohammad Pazhang,
Volume 4, Issue 2 (9-2017)
Abstract

In recent years, the involvement of nitric oxide (NO) in numerous physiological processes, particularly the mitigation of stress-induced negative effects on plants, has been clarified. Under salinity conditions, plants are subjected to a secondary oxidative stress.  The present work was designed to examine the exogenous application of nitric oxide (NO), in the form of its donor sodium nitroprusside (SNP), in mitigating the deleterious effects of salinity on Zygoph-yllum fabago L. plants. SNP (200 µM) was applied to plants growing medium under saline (200 and 400 mM NaCl) and non-saline conditions. Growth, oxidative stress markers [cell membrane stability index (MSI) and H2O2 conc-entration], antioxidant enzymes activities [peroxidase (POX, EC 1.11.1.7) and catalase (CAT, EC 1.11.1.6)], as well as the contents of some antioxidant compounds (flavonoids and carotenoids) were determined. Salinity lowered the shoot and root dry weights, while it enhanced peroxidase and catalase activities. High salinity increased H2O2; however, it de-creased the carotenoids content of leaves. Exogenous NO enhanced the growth, MSI, flavonoids and carotenoids co-ntents of salinized plants. In salinity plus SNP treated plants, H2O2 concentration and the activities of the examined en-zymes were reduced. Data suggest that a cooperative process is performed by the antioxidant systems in Syrian bean ca-per in order to cope with salinity. Also, the application of exogenous NO was found to be useful in the mitigation of salinity-induced oxidative stress in plants.
Siamak Yari, Roya Karamian, Mostafa Asabbeigi, Ali Namdari,
Volume 4, Issue 4 (12-2017)
Abstract

This study aimed to investigate the protective effect of Arctium lappa (AL) on gentamicin (GM)-induced nephrotoxicity in rats. Twenty-four Wistar rats were divided into four groups including: control group; GM group (intrapritoneal injection, IP, of 100 mg/kg GM B.W.); GM+AL group (received IP injection of 100 mg/kg GM and 500 mg/kg AL orally) and AL group (received 500 mg/kg AL orally). The experimental period lasted for 10 days. Nephrotoxicity was biochemically and histologically evaluated. The concentrations of creatinine, urea, malondialdehyde (MDA), superoxide dismutase (SOD) and peroxide hydrogen (H2O2) in the serum samples were determined. Moreover, histological examinations were performed. The animals treated with gentamicin showed significantly higher serum urea, creatinine, MDA and H2O2 levels and lower SOD activity. However, co-administration of AL produced amelioration in biochemical indices of nephrotoxicity in serum. Histomorphological examination showed necrosis and desquamation of tubular epithelial cells in the renal cortex in animals treated with gentamicin whereas simultaneous administration of AL and GM reduced histological damages. The data obtained suggest that treatment with AL extract can help to reduce gentamicin-induced nephrotoxicity.
 
 
 

Page 1 from 1     

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb