Search published articles


Showing 2 results for Salt Stress

Hamzeh Amiri, Leila Moazzeni,
Volume 3, Issue 1 (6-2016)
Abstract

In order to study the interaction effects of salinity and ascorbic acid on the photosynthetic pigments, soluble sugar, proline, and protein in Satureja khuzestanica plant, factorial experiment was conducted in a completely randomized design (salinity in 4 levels 0, 40, 80 and 120g in 100kg soil and ascorbic acid in 2 levels 0 and 2 mM ) with 6 replicates. The results showed that salt stress reduced photosynthetic pigments amount by increasing the soil salinity from 0 to 40g NaCl in 100kg soil and then increased by 80g NaCl in 100kg soil and again decreased by concentration of 120g NaCl in 100kg soil. The amount of solouble sugar, proline and protein by the soil salinity increased from 0 to 40g in 100kg soil and then decreased in concentration of 80g NaCl in 100kg soil, in 120g NaCl in 100 kg soil increased amount of characters. In present of ascorbic acid photosynthetic pigments amount of pigments increased by increase the soil salinity from 0 to 40g NaCl in 100kg soil and then decreased by 80g NaCl in 100kg soil and again increased by concentration of 120g NaCl in 100kg soil. But, amount of solouble sugar, proline and protein by the soil salinity decreased from 0 to 40g in 100kg soil and then increased in concentration of 80g NaCl in 100kg soil. Finally, in 120g NaCl in 100kg soil decreased amount of characters.


Mehrnoush Daneshvar, Mahmood Maleki, Shahryar Shakeri, Amin Baghizadeh,
Volume 6, Issue 4 (12-2019)
Abstract

Phosphorus, the most essential nutrient for plants, becomes quickly unavailable for the plants in the soil. Phosphate solubilizing bacteria (PSB( can play an important role in providing Phosphorus for plants. In this study, the PSBs were screened from plant rhizosphere by Pikovskaya method. Then, the growth rate and phosphate solubilizing ability of 9 superior strains were measured at different temperatures and levels of salinity and pH. The best strain was identified by 16S rDNA gene sequence analysis. Finally, the genetic diversity of phosphate solubilizing strains were examined by RAPD markers. Results showed that 25 strains were capable of solubilizing insoluble phosphates among the 57 isolates studied. Of the nine superior strains, Cke1 had the highest solubilizing index with the average growth rate under all conditions and was introduced as the best PSB strain identified in the present study. 16S rDNA gene sequence analysis showed that this strain belonged to the Enterobacter genus. The results of genetic variation showed that all stains were divided into six groups and three strains that had the lowest similarity with other strains were placed in three separate groups. Given that Cke1 strain has the ability of solubilizing the insoluble phosphate in different stresses, it can be a good candidate for providing phosphorus at temperatures of 30 and 35 °C, 1.2% and 1.8% salinity levels and pH levels of 6 and 8 for the crops.



Page 1 from 1     

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb