Search published articles


Showing 4 results for Yeast

Farshad Darvishi,
Volume 6, Issue 2 (8-2019)
Abstract

Lipase is used in the production of foods, flavor enhancers, detergents, cosmetics and pharmaceuticals. A common impediment to the production of commercial enzymes is their low-stability aqueous solutions. In this study, the downstream process was investigated to obtain a stable spray-dried lipase powder of Yarrowia lipolytica. The enzyme solution samples were supplemented with different concentrations of Arabic gum and milk powder to spray-drying. Samples were dried in a pilot spray dryer at inlet and outlet temperatures of 175 and 85 °C, respectively, at a flow rate of 15 liters per hour. The best lipase powder obtained from spray-drying with 3% of Arabic gum and 9% of milk powder formulation as compared with other formulations. Results showed that spray-dried lipase powders of Y. lipolytica had a good yield suitable for various applications.
 
 


Vida Tafakori, Nasim Nasiri,
Volume 6, Issue 4 (12-2019)
Abstract

Plants have been used as medicines in the treatment of diseases from the past to present. In this research, the anti-microbial effects of aqueous and methanolic extracts of Erythrostemon gilliesii were studied. For this purpose, fresh flowers were ground and then macerated in methanol 100% and water overnight. After the evaporation of solvents, anti-microbial activities of the concentrated extracts were evaluated by the well-diffusion method on Klebsiella pneumoniae, Pseudomonas aeroginosa, Methicilin resistance, Staphylococcus aureus, Bacillus subtilis and Candida albicans. The results showed that the extracts were effective on different bacteria and yeasts. In order to determine the minimum inhibitory concentration (MIC) and minimum biocidal concentration (MBC), anti-microbial tests were performed in micro-plates. Subsequently, the results indicated that the extracts were stable at different temperatures. The aqueous and methanolic extracts of the flowers of E. gilliesii had exhibited anti-microbial effects against important infectious microbes and could be introduced as an excellent source for anti-microbial agents.
 
 
Monireh Marsafari, Habibollah Samizadeh Lahiji, Babak Rabiei, Ali Ashraf Mehrabi, Yongkun Lv, Peng Xu,
Volume 7, Issue 2 (7-2020)
Abstract

Yarrowia lipolytica, as a good cell factory to speed up the production of plant pharmaceutical components, has been considered to be one of the most important and attractive micro-organisms in recent years, due to its high secretion capacity, limited glycosylation, large range of genetic markers and molecular tools. Naringenin, as a central core of flavonoids production, plays important roles both in plants and in the treatment of different types of human diseases. For this purpose, specific naringenin biosynthesis genes from different origins were selected and introduced after comparative expression profiling in Y. lipolytica. This research indicated that chs plays the main role in the production of naringenin, so the increase copy number of this gene in each construct was investigated. The HPLC results confirmed that the construct with 5 copy numbers of chs resulted in 7.14 fold increase of naringenin extracellular titer to 90.16 mg/L in shake flask cultures. The results reported in this study demonstrated that sufficient knowledge of genes involved in the specific biosynthesis pathway, synthetic gene pathway and using Y. lipolytica as a capable and cheap host could help bioengineers to produce significant amounts of pharmaceutical components.
 
 
Neshat Soosani, Morahem Ashengroph, ,
Volume 8, Issue 3 (10-2021)
Abstract

The biosynthesis of nanoparticles (NPs) has been proposed due to its fast, clean, safe, and cost-effective production and being efficient alternative to conventional physicochemical methods. This study aimed to isolate and identify aquatic yeast strains for their potential to form Zinc oxide nanoparticles (ZnONPs). A yeast strain, NS02, with high tolerance against zinc ion (5.25 mM) was isolated using the enrichment technique and was selected as efficient candidate for the biosynthesis of ZnONPs under cell-free extract (CFE) strategy. The preliminary evaluation on the formation of ZnONPs was performed by visual observation and UV-visible absorption spectra of the biosynthesized ZnONPs. The morphology, size and elemental distribution of the nanoparticles were determined by Field emission scanning electron microscopy (FESEM) equipped with energy-dispersive X-ray (EDX). X-ray diffractometer (XRD) was used to identify the crystalline phase of the ZnONPs. Antibacterial activity of ZnONPs against pathogenic bacteria isolated from the clinical specimens was investigated using agar well diffusion method. The isolate NS02 was characterized based on their morphological properties and amplification the ITS-5.8S-ITS2 rDNA regions. The present study pioneered the capabilities of the native aquatic strain Rhodotorula pacifica for the extracellular synthesis of ZnONPs with CFE strategy. The biosynthesized ZnONPs had a growth inhibitory effect all tested clinical isolates due to their nanometric size and well-defined dispersity. This investigation is attempted to indicate the novel microbial sources of aquatic yeasts as biological plant in the synthesis of ZnONPs with antimicrobial activity under cell-free extract strategy.
 



Page 1 from 1     

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb