Reviewing the damage caused by landslide proves the need to examine the factors influencing the occurrence of this phenomenon and the prediction of its occurrence. Therefore, the purpose of this study was to improve the prediction of landslide occurrence in the Taleghan watershed using Shannon Entropy Theory. Among the factors influencing the occurrence of landslide, ten factors of elevation, slope, slope direction, geology, vegetation, land use, water congestion, fault, road, rainfall as independent variables and sliding zones were considered as dependent variables. Then, using the entropy index, weighing was calculated for each of these factors based on their effectiveness, and the value map of each parameter was calculated according to its weight. In the next step, by mapping these maps with the map of landslides, a risk zoning map for the basin was drawn up. After calculating the Shannon entropy index, it was determined that 86% of the landslide area is in three medium-risk, high-risk and highly hazardous areas, indicating that the final map of the zoning is based on the correct method. Also, the total quality index (Qs) in this method was equal to 2.3, which indicates that this method is more reliable and more suitable for zoning of landslide hazard in Taleghan watershed. The accuracy of the method (P) for the entropy model was equal to 0.24, indicating a more appropriate resolution of the risk zones in this method.