By employing urban growth and development modeling, it is feasible to delineate a developmental trajectory that aligns with the specific circumstances of a city, considering environmental factors, natural elements, and population dynamics. The aim of this research is to propose an urban development model for Shushtar, which can serve as a valuable tool for analyzing the intricate processes of urban transformations. To accomplish this objective, two datasets were utilized: urban land use maps (including educational spaces, healthcare facilities, residential areas, etc.) and Landsat satellite imagery for key land uses such as rivers, barren lands, and forests, spanning three time periods: 1991, 2004, and 2014. These datasets were processed using GIS and MATLAB software. Existing urban land use maps were digitized and subsequently updated using Landsat satellite imagery. Subsequently, influential parameters in urban development were introduced as inputs to the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm. After training the model for the years 1991 and 2004, the predicted results of urban development using the algorithm were compared with the actual situation in 2014, demonstrating a high accuracy of 93.7%. The land use change map, resulting from the change detection process, can be generated based on multi-temporal remote sensing images and their integration with urban land use maps, enabling an analysis of the associated consequences. The use of intelligent algorithms in this research has facilitated modeling with a high level of accuracy. The obtained results are deemed acceptable, and this development has also been predicted for the upcoming years.