Search published articles


Showing 2 results for Foroughi

Dr. Mostafa Kabolizadeh, Dr. Sajad Zareie, Mr. Mohammad Foroughi Rad,
Volume 0, Issue 0 (3-1921)
Abstract

There are various indicators to monitor and management of agricultural water resources in arid and semi-arid countries including Iran, some of which can be extracted directly in situ, and some can be retrieved using remote sensing technology and satellite images. Aim of this study is to propose the most appropriate and efficient indicators of agricultural water resource management for achieving maximum production and maximum water efficiency using remote sensing technology, therefore, Crop Water Stress Index (CWSI) and Surface Energy Balance Algorithm (SEBAL) were used to estimate Evapotranspiration (ET). In the first step, ET rate was calculated using SEBAL algorithm for six Landsat 8 satellite images related to the wheat growth period. Then, zoning of this index was done in the range of zero to one, in four categories of very low, low, medium and high, which respectively indicate the lowest to the highest amount of ET. In next step, CWSI was calculated based on Idso equation, and its results show different changes both in cold season and in warm months. Comparison of ET and CWSI shows a significant relationship between these two indices in warm months, while in cold months, no significant relationship can be seen. These findings along with the established relationship between ET and CWSI can inform water management strategies in arid environments for sustainable crop production.

Dr Yagob Dinpashoh, Miss Masoumeh Foroughi,
Volume 20, Issue 58 (9-2020)
Abstract

Reference evapotranspiration (ET0) is a climatic parameter and can be computed from weather data. It is one of the most important hydrological parameters for calculating crop water demand, scheduling irrigation systems, preparing input data to hydrological water-balance models, regional water resources assessment, and planning and management for a region and/or a basin. The climatic data from synoptic stations with more than 20 years continues record in West Azarbaijan province was used. The well-known FAO-PM56 method was used to calculate the ET0. Then Multiple linear Regression (MLR) was used to estimate the ET0. The RMSE, MEA, NSH, and R2 were used to evaluate the performance of the MLR model. Then, the correlation coefficient (r) between ET0 and each of the meteorological parameters was obtained. And finally, with using Path analysis method, the influence of direct (P) and indirect effects of the meteorological parameters on ET0 was calculated. In the studied synoptic stations, NSH between 0.91 and 0.99,   R2 between 0.91 and 0.99, RMSE between 0.05 and 0.15, and MEA between 0.04 and 0.12 were obtained. Also, it was found that the wind speed at all of stations had a significant correlation (at the 0.01% level) with ET0. The path analysis results showed that the maximum value of P (direct effect of meteorological parameters on ET0) in all of the stations belongs to wind speed. The P value of wind speed in Urmia equal to 0.85, Piranshahr equal to 0.99, Takab equal to 0.97, Khoy equal to 0.90, Sardasht equal to 1.06, and Mahabad equal to 0.78 are obtained.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb