Search published articles


Showing 32 results for Precipitation

Dr Raoof Mostafazadeh, Engr. Roghayeh Asiabi-Hir, Engr. Seyed Saied Nabavi,
Volume 23, Issue 69 (6-2023)
Abstract

Drought is the main causes of significant water imbalance, increase of crop losses or limitation in water consumption, and finally large number of socioeconomic and environmental problems. Precipitation amount is the most important climatic variables that its spatiotemporal variability has a great influence on water resources availability along with the effects of climate change. The Angot index is an indicator to determine the climatic cycles of precipitation as the ratio between the average values of multiannual precipitation over wet and dry periods which highlights the climate significance of monthly precipitation to detect dry or rainy intervals. The aim of this study is to assess and calculation of the Angot inxed in analysis of dry and wet periods of monthly rainfall in rain gauge stations of Ardabil province. The maximum values of Angot index were observed in November and May months. The results proved the suitability of the Angor index in determining wet and dry months and the comparison of the employed index with other common drought indices (e.g. Standardized Precipitation Index) and also different climatic zones of Iran needs further investigations.
Maryam Saghafi, Gholamreza Barati, Bohloul Alijani, Mohammad Moradi,
Volume 23, Issue 71 (12-2023)
Abstract

Precipitation is a phenomenon resulting from complex atmospheric interactions and among climatic events, due to its vital role, it has special importance. The importance of precipitation durability, especially in arid and semi-arid regions, which includes most of Iran, is greater than its volume. The purpose of this study is to identify Iran's precipitation areas in terms of precipitation durability and its characteristics in each area. In order to investigate the durability of Iran's precipitation and to define a precipitation day as " a day with equal precipitation or greater than 0.5 mm", used from daily precipitation data of 80 synoptic stations of the country during the 6 cold months of the year from October to March in a period of 30 years (2016 - 1987). Setting data in daily tables in the first step, made possible to program in MATLAB environment to separate precipitation in ten groups from "one day" to "ten days" and in the second step in SPSS environment based on frequency characteristics, amount and precipitations average in the mentioned groups was done by the method of Ward merging and clustering. The process of the clustering on Iran's durability precipitation showed that there are seven almost homogeneous precipitation zones in Iran; the geographical arrangement of Iran's precipitation areas, reveals the dependence of Iran's precipitations amount on roughness, the path of precipitation systems, its proximity to humidity sources, and the effect of the sea. In terms of area’s location, it can be said that; the settlement of the four zones in the western half of Iran, despite its small size in front of the eastern half, is a reason for its heterogeneity.
 
Mr Danesh Nasiri, Dr Reza Borna, Dr Manijeh Zohourian Pordel,
Volume 24, Issue 72 (3-2024)
Abstract

Knowledge of supernatural microphysical properties and revealing its relationship with the spatial temporal distribution of precipitation can significantly increase the accuracy of precipitation predictions. The main purpose of this study is to reveal the relationship between the Cloud microphysical structure and the distribution of precipitation in Khuzestan province. In this regard, first 3 inclusive rainfall events in Khuzestan province were selected and their 24-hour cumulative rainfall values were obtained. The rainfall event of 17December2006, was selected as a sample of heavy rainfall, 25 March 2019, as a medium rainfall case, and finally 27 October 2018, as a light rainfall case. Microphysical factors of clouds producing these precipitations were obtained from MODIS (MOD06) cloud product. These factors included temperature, pressure, and cloud top height, optical thickness, and cloud fraction. Finally, by generating a matrix with 64000 information codes, and performing spatial correlation analysis at a confidence level of 0.95, the relationship between the Cloud microphysical structure and the spatial values and distribution of selected precipitates was revealed. The results showed that in the case study of heavy and medium rainfall, the spatial average of 24-hour cumulative rainfall in the province was 36 and 12 mm, respectively. A fully developed cloud structure with a cloud ratio of more than 75% and a vertical expansion of 6 to 9 thousand meters, with an optical thickness of 40 to 50, has led to the occurrence of these widespread and significant rainfall in the province. While in the case of light rain, a significant discontinuation was seen in the horizontal expansion of the cloud cover in the province and the cloud cover percentage was less than 10%. In addition, the factors related to the vertical expansion of the cloud were much lower, so that the height of the cloud peak in this rainfall was between 3 to 5 thousand meters. The results of this study showed that in heavy and medium rainfall cases, a significant spatial correlation was observed at a confidence level of 0.95 between MOD06 Cloud microphysical factors and recorded precipitation values, while no significant spatial correlation was observed in light rainfall case.
 
Zoleikha Khezerluei Mohammadyar, , Bohloul Alijani,
Volume 24, Issue 73 (6-2024)
Abstract


The purpose of this article is to analyze the frequency and severity of the one to six days of rainfall in Iran. The trend of frequency changes and severity of each course was identified using my-candle test and the slope estimator during the 1968-1988 period. Then, using the main component analysis method and cluster analysis method, the entire stations were categorized in five clusters (abundance) and four (intensity) based on the annual changes of frequency indicators and intensity of precipitation. Cluster 1 and 2 stations represent the frequency of precipitation periods with a severe or without trend. The two clusters were mostly established in the southern half of Iran. Cluster 4 and 5 stations represent the frequency of precipitation periods with a positive (mild) trend, mainly in the northern part of the country. Cluster 3 stations represent the frequency of precipitation periods with decreased (mild) trends, which are mostly focused on west and southwestern Iran. The clustering results of the stations based on the intensity index of precipitation periods, contrary to many results; do not show a specific pattern. But in the cluster, there has been a severe decrease in the last half century. The stations of this cluster are mostly concentrated in the northern parts of the country. Other clusters are scattered in almost all parts of the country. Accordingly, it can be concluded that the frequency of precipitation periods in the northern latitudes of incremental processes (average or weak) and the severity of precipitation periods in these latitudes (north of the country) had severe declining trends.

Keywords: Frequency of precipitation, intensity of precipitation, analysis of main components, clustering, process.
 

Saeed Jahanbakhshasl, Ali Mohammadkhorshiddoust, Fatemeh Abbsighasrik, Zahra Abbasighasrik,
Volume 24, Issue 75 (12-2024)
Abstract

 Assessing and predicting future climate change is of particular importance due to its adverse effects on water resources and the natural environment, as well as its environmental, economic and social effects. Meanwhile, rainfall is also an important climatic element that causes a lot of damage in excess conditions. West Azerbaijan Province is no exception. The aim of this study is to model and predict 30 years of rainfall in West Azerbaijan province. The statistical period studied is 32 years (2019-1987). Selected stations in the province include Urmia, Piranshahr, Takab, Khoy, Sardasht, Mahabad and Mako stations. Average slider time series models, Sarima (seasonal Arima), Health Winters were used for analysis and prediction and also linear regression and Mann-Kendall test were used to determine the data trend. The results show an increasing trend of precipitation in Urmia, Piranshahr, Khoy, Sardasht and Mako stations and a decreasing trend in Takab and Mahabad stations. According to the results of comparing the models used, the Health Winters model with the least error in the absolute mean of deviations, mean squared deviations and the percentage of absolute mean errors was introduced as the best precipitation forecasting model for West Azerbaijan province. province.                                     [A1] 


Ali Hashemi, Hojjatollah Yazdanpanah, Mehdi Momeni,
Volume 24, Issue 75 (12-2024)
Abstract

This research study aims to investigate the effect of climatic variables, specifically precipitation, temperature, and humidity, on changes in vegetation indices of orange orchards in Hassan Abad, Darab County, using satellite data. Consequently, observational data, including orange tree phenology data and meteorological data from the agricultural weather station, were collected over a period of more than 10 years (2006 to 2016). MODIS images from 2006 to 2016 were referenced based on territorial data and 1:25000 maps from the Iran National Cartographic Center. These images were used to calculate remote sensing vegetation indices, namely the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). The results demonstrated that the variables of maximum humidity, minimum temperature, and precipitation have a significant positive effect on the NDVI variable. Additionally, the variables of maximum temperature and minimum humidity have a significant negative effect on both the NDVI and EVI. To determine the significance of each independent variable in predicting the dependent variables, the artificial neural network method was employed. The findings showed that the climatic elements of precipitation, minimum temperature, maximum temperature, minimum humidity, and maximum humidity had the greatest effect on EVI, with values of 0.39, 0.3, 0.13, 0.1, and 0.06 respectively. Moreover, the effect of these variables on the NDVI index is equal to their coefficients, which are 0.2, 0.28, 0.22, 0.11, and 0.17 respectively. Finally, the ARMAX regression method was used to improve the explanatory power of the model. The results indicated that this method enhanced the explanatory power of the model and reduced the forecasting error.


Shamsallah Asgari, Tayeb Razi, Mohamadreza Jafari, Ali Akbar Noroozi,
Volume 25, Issue 76 (3-2025)
Abstract

Due to the significance of forests in both the natural and human environment, this study aims to investigate the impact of meteorological drought on oak forest dieback in Ilam province. Specifically, the study seeks to determine the relationship between Zagros Forest drought and droughts in this particular region. The analysis utilizes the Standard Precipitation Index (SPI) to identify the frequency of droughts during different time periods. The results indicate that the years 2007, 2008, 2011, 2015, and 2016 experienced the highest occurrence of droughts. Additionally, remote sensing data from MODIS images were employed to examine the trend in tree greenness (NDVI) from 2000 to 2016. The analysis reveals a significant correlation (R2 = 0.9999) between the greenness trend and the drought index (SPI). Moreover, a land survey of oak drying points and simulation using Landsat satellite images, with a 15×15 pixel output from GIS software, indicate that approximately 17,894 hectares of forests in the region experienced drying and destruction between 2000 and 2016. By combining the oak forest drying layer with the output layers derived from drought zoning, visual indicators were created, and statistical analysis was conducted for three 5-year time series. The results demonstrate a correlation coefficient of 96.6% and an explanation coefficient of R2 = 0.985 for the 2002-2006 time series, a correlation coefficient of 95.4% and an explanation coefficient of R2 = 0.980 for the 2007-2011 time series, and a correlation coefficient of 98.8% and an explanation coefficient of R2 = 0.995 for the 2012-2016 time series. These findings illustrate the influence of drought and its variations in terms of intensity and duration on oak forests in the Zagros region of Ilam. Based on the study results, it is predicted that if the drought persists with the same trend, approximately 1,118.4 hectares of oak forests in Ilam province will dry up and be destroyed annually.

Zeinab Mokhayeri, Ebrahim Fatahi, Reza Borna,
Volume 25, Issue 76 (3-2025)
Abstract

To conduct this research, data on monthly synoptic and hydrometric precipitation observations from the National Meteorological Organization and the Ministry of Energy were obtained for a 30-year period (1976-2005). To assess future changes in rainfall, historical data from the period (1976-2005) and simulated climate data from the period (2021-2050) using two models (CM3 and CSIRO-Mk3.6) from the CMIP5 series were used. These simulations were based on four scenarios (RCP2.6, RCP4.5, RCP6, and RCP8.5) with a spatial resolution of 0.5 x 0.5 using the BCSD method. A mean-based (MB) strategy was employed to correct any bias in the model outputs.  The results of the AOGCM models indicated that the CSIRO-Mk3.6 model had a lower error coefficient than the GFDL-CM3 model when simulating precipitation in the Large Karoun case. The average future rainfall (2021-2050) across the entire basin, compared to the average observed rainfall during the statistical period of 1976-2005, exhibited a significant decrease in both the amount and extent of precipitation in both basins for all models and scenarios. In the Great Karoun Basin, heavy rains were consistently concentrated east of the basin across all scenarios and models, with the central foothills experiencing the highest rainfall and the southwest and southeast regions receiving the lowest amounts.  The findings of this study estimate rainfall to range between 83-116 mm, with the highest rainfall expected in the Greater Karoun Basin under the rcp4.5 and rcp2.6 scenarios for both models.

Dr Abolhassan Gheibi, Mr Ali Soleymani, Hossein Malakooti,
Volume 25, Issue 76 (3-2025)
Abstract

Nitrogen dioxide is a significant factor affecting air quality in various regions worldwide. The aim of this study is to examine the concentration and trends of nitrogen dioxide pollution between 2005 and 2018, and explore its association with precipitation levels in the region. Based on data derived from the OMI sensor in Iran, the average vertical column concentration of nitrogen dioxide during this period revealed that the highest concentration was observed in the troposphere. Megacities, particularly Tehran metropolis, exhibited elevated levels of nitrogen dioxide due to the high population density and extensive road transportation. Analyzing the annual changes in nitrogen dioxide concentration in the troposphere alongside the average annual precipitation in Iran, it was observed that the pollutant concentration increased from 2005 to 2016 and subsequently decreased from 2016 to 2018, primarily due to population growth. However, when considering the overall trend, there was an upward trend with a slope of 3.53× -2. In contrast, the time series analysis of average annual precipitation in Iran demonstrated a declining trend with a slope of (-0.159 mm × ). Comparing the trends of these two variables, it can be deduced that they exhibit a negative correlation.

Rastegar Mohammadi, Mohammad Saligheh, Mohammad Hossein Naserzadeh, Mehri Akbari,
Volume 25, Issue 78 (9-2025)
Abstract

Extratropical cyclones, characterized by their frequency, duration, and intensity, serve as the primary drivers of mid- and high-latitude precipitation across the Mediterranean during the winter and autumn months. For this research, climatic variables obtained from the ECMWF network, featuring a temporal resolution of 6 hours and a spatial resolution of 0.25° × 0.25°, spanning from 1979 to 2016, were utilized. Additionally, precipitation data from four basin stations sourced from the Asfezari database for the same period were analyzed. Initially, geopotential height, temperature, humidity, and jet stream data for rainy days were extracted using MATLAB. Subsequently, a cyclonic center extraction algorithm was applied to identify cyclonic centers from the geopotential height data, based on the conditions that the geopotential height is at a minimum and the geopotential gradient is at a maximum. From the geopotential height matrix of rainy days (361×441×498), four distinct atmospheric patterns were identified through cluster analysis. The temporal and spatial frequency of these patterns, as well as the average temperature of cyclonic centers, were analyzed for the cold season months. The results indicated that the first pattern, identified as the Mediterranean trough pattern, is the most frequent, occurring 42% of the time. This pattern is characterized by the presence of a high-level system acting as a barrier, which deepens the low-level Mediterranean system and extends its axis toward the Red Sea. The interaction between low-level and high-level systems enhances instability, resulting in the highest precipitation levels among the identified patterns. Conversely, the fourth pattern, termed the western wind trough pattern, exhibits the lowest frequency at 10%. This pattern is characterized by a trough over the Caspian Sea; however, a high-level system in the southern region inhibits the entry of low-level systems, thereby confining cyclonic activity to the northern portion of the study area. Consequently, the isobars in the northern region assume a more orbital configuration, leading to a decreased influx of cyclones and, as a result, lower precipitation amounts compared to the other patterns. The analysis further revealed that cold-core cyclones accounted for 60% of occurrences in winter and 40% in autumn, while hot-core cyclones constituted 62% in winter and 38% in autumn. Notably, the frequency of hot-core cyclones increased relative to cold-core cyclones in winter, whereas an inverse trend was observed in autumn. Over the past decade, both the frequency and intensity of cyclones have diminished compared to the preceding two decades. In terms of cyclogenesis locations, the western part of the study area has consistently emerged as the most active region. Moreover, cyclogenesis activity exhibits a gradual increase from autumn to winter as the cold season progresses. These findings underscore the dynamic nature of extratropical cyclones and their significant role in shaping precipitation patterns across the Mediterranean region.
 

Mohsen Azizi, Hossein Mohammadi, Dariush Taleghani,
Volume 25, Issue 78 (9-2025)
Abstract

The aim of this research is to identify potential areas for autumn sugar beet cultivation in Golestan Province, Iran, based on temperature and precipitation parameters. Temperature (daily) and precipitation (annual) data from a 15-year statistical period (2006–2020) were analyzed using methods such as thermal potential diagrams, deviation from optimal conditions, phenology, and zoning of irrigation requirements based on annual rainfall. The results of the temperature evaluation using the thermal potential method, based on thermal thresholds of 0°C, 4°C, and 10°C, revealed that Inche Brun station has the highest cumulative thermal units, while Aliabad Katul station has the lowest. Analysis of the probability of late spring frost at the 95% confidence level showed that frost events occurring at the end of April in the central, eastern, northern, northeastern, and western parts of Golestan Province coincide with the phenological stages of root bulking and sugar accumulation in sugar beet.  Based on the deviation from optimal conditions, Inche Brun station exhibited the lowest deviation (-20.64), indicating more favorable conditions for sugar beet cultivation. Phenological analysis identified Gonbadkavus, Bandar Turkman, Kalaleh, Inche Brun, and Bandar Gaz as the most suitable areas for autumn sugar beet cultivation in Golestan Province. Rainfall evaluations using the annual rainfall zoning map of Golestan Province indicated that, while there are no significant limitations in terms of rainfall and water supply for autumn sugar beet cultivation, the recent multi-year droughts necessitate additional irrigation to ensure optimal growth. In conclusion, this study highlights the potential for autumn sugar beet cultivation in specific areas of Golestan Province, taking into account thermal conditions, frost risks, and rainfall patterns. However, supplementary irrigation is recommended to address water shortages caused by prolonged droughts.

Ms. Aida Faroghi, Professor Manuchehr Farajzadeh, ,
Volume 25, Issue 78 (9-2025)
Abstract

In this study, the frequency of merging events between the polar-front jet stream and the subtropical jet stream, along with their impact on precipitation patterns in western Iran, was analyzed over a ten-year statistical period (2010–2019). Utilizing coding in GrADS, 300 hPa jet stream maps were produced at six-hour intervals. Throughout the study period, the axes of these two jet streams merged on several occasions.
An examination of the frequency of merging indicated that, prior to 2015, the frequency of merging in December exhibited an increasing trend. However, this trend diminished in 2016 and 2017, only to experience a resurgence in 2018 and 2019. It is noteworthy that not all instances of jet stream merging resulted in significant precipitation events (e.g., December 2011, 2014, and 2017). For instance, in light of the substantial rainfall of 110 mm recorded at the Dehloran station, the period from December 12 to 15, 2010, was selected for detailed analysis to elucidate the atmospheric mechanisms responsible for the rainfall. From December 12 to 15, 2010, a decline in air temperature over Europe and Southwest Asia prompted a considerable meridional displacement of the polar-front jet stream, resulting in its merger with the subtropical jet stream. On December 12, 2010, as the polar-front jet stream underwent meridional movement and extended into tropical regions, its velocity core merged with that of the subtropical jet stream over the northern Arabian Peninsula, the Red Sea, and northeastern Africa. The convergence of these two jet streams led to a vertical expansion of the jet stream into lower atmospheric levels. At the mid-levels of the atmosphere, minimal meridional movement was observed. As a result, the Sudan low-pressure system migrated to higher latitudes, merging with the Mediterranean low-pressure system.


Page 2 from 2     

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)