Professor Ghasem Azizi, , Leyla Sharifi,
Volume 17, Issue 47 (12-2017)
Abstract
Thunderstorms are major climatic events due to the significant effects and catastrophic consequences on humans and the natural environment. The researches have shown that the elevation and latitude factors are two variables that can affect the occurrence of this phenomenon. Therefore, the main aim of this study is to investigate the spatial analysis of the effects of lightning and its effects on the components such as elevation and geographic extent in Iran. Apart from this fact, firstly, the monthly data of thunderstorms occurrence in 118 synoptic stations of Iran, from 1991 to 2010 on a basis from the country's meteorological organization were obtained and GIS software was produced by the annual and seasonal maps of Iran. Then, for the spatial analysis of this climatic phenomenon, the method of landing statistics of the Kriging (Universal) method was to examine its seasonal and annual status. In order to better understand the effect of Thunder hurricanes from altitude and latitude using Curve Expert software, seasonal and annual charts, along with the correlation of each production, were analyzed. The results show that the highest annual thunderstorms occur in the northwest of Iran, and the least amount is consistent with the central and eastern parts of the country. In addition, according to seasonal analysis, although the station has the highest rate at 800 to 1,300 meters, the maximum occurrence of this phenomenon varies from 0 to 2200 meters in different seasons of the stations. The overall result shows that the factor of height is slightly correlated with the occurrence of the Thunder storm phenomenon and the highest correlation is due to the latitude factor.
, , , , ,
Volume 17, Issue 47 (12-2017)
Abstract
The purpose of this research is the simulation of the maize function to scenario of climate change to the present and future. So to survey the region climate, daily data, maximum and minimum temperature, precipitation and radiation have been utilized during the period of (1987-2016). In order to simulating of climate in future, firstly the date of IPCM4 model under scenario and 30’s and 50’s with downscaling LARS-WG model. Before the simulation yield of maize, APSIM model was evaluated and validated. To calculate the maize yield the output of LARS model, plant date and were utilized as the cropping input model of APSIM. By variance analysis maize yield was compared in present and future. The results showed that the APSIM model validation can simulate acceptable accuracy and climate parameters change effect on the yield rate of maize. And on the basis of the highest yield in Fasa the lowest in the city Abade in base line. In future under different scenarios of climate change, maze grain yield in Fars province except Abade, other cities are decreasing than base line.
Dr. Mostafa Karimi, Mis Fatemeh Sotoudeh, Dr. Somayeh Rafati,
Volume 18, Issue 48 (3-2018)
Abstract
Increasing CO2 emissions and consequently, air temperature causes climate anomalies which affects all the aspects of human life. The purpose of this study was to assess the temperature changes and also to predict the extreme temperatures in Gilan and Mazandaran Provinces. To do this, the SDSM statistical and dynamical model was used. As well, it was applied the Mann-Kendal graphical and statistical technique to analyze the temperature changes and its trend. In this regard, the daily temperature was obtained from Rasht, Ramsar and Babolsar synoptic stations during 1961 – 2010, and also the general circulation models data of HadCM3 and NCEP were collected from related databases. The results revealed a significant positive trend in monthly and annual minimum and maximum temperature in all three stations in the first (1961-2010) and third (1961-2040) periods. There is not a significant trend in extreme temperatures in Ramsar and maximum temperature in Rasht in the second period (2011-2040). The Mann-Kendal graphical test was used for the yearly extreme temperatures in all periods. The results showed that it was occurred both increasing trend and suddenly changes or shifts at the 95% confidence level in all stations. It is occurred the highest of changes in monthly and annual of the minimum temperature at forecasted period (2011-2040). It was predicted extreme temperature to increase about 0.1 to 1.7° C. The short time oscillations and significant positive trend occurred in both the maximum and minimum temperature shows the temperature increase and climate changes in the future. Thus it is obvious the decrease in temperature difference in warm and cold seasons.
Chenoor Mohammadi, Manouchehr Farajzadeh, Yousef Ghavdel Rahimi, Abbas Ali Aliakbar Bidokhti,
Volume 18, Issue 48 (3-2018)
Abstract
This study is aimed at estimating monthly mean air temperature (Ta) using the MODIS Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), latitude, altitude, slope gradient and land use data during 2001-2015. The results showed that despite some spatial similarities between annual spatial patterns of Ta and LST, their variations are significantly different, so that the Ta variation coefficient is four times the one of the LST. Our analysis indicated that while in winter latitude is the key factor in explaining the distribution of the differences LST-Ta, in other seasons the role of slope and vegetation become more prominent. After obtaining the spatial patterns of LST and Ta, we estimated Ta using regression models in spatial resolution of 0.125˚. The lowest estimation error was found in the months of November and December with a high explanatory coefficient (R2) of 70% and a standard error of 1 ° C. On the other hand, the maximum error was obtained from May to August with R2 between 59 to 63% and a standard error of 1.6 ° C which is significant at the 0.05 level. In addition, result of evaluation of individual months showed that estimation of Ta is more accurate at the cold months of the year (November, December, January, February, and March). With considering different land uses, the highest R2 was related to waters and urban areas (96 to 99%) in warm months, and the lowest R2 was for mixed forest and grassland (between 15 and 36%) in cold months.
Fatemeh Ghiasabadi Farahani, Faramarz Khoshakhlagh, Aliakbar Shamsipour, Ghasem Azizi, Ebrahim Fattahi,
Volume 18, Issue 48 (3-2018)
Abstract
The present research about the spatial changes of precipitation is mainly focused on western areas of Iran. Precipitation data for three seasons of fall, winter, and spring have been obtained from Esafzari Database, with 15*15 km spatial resolution in the form of a Lambert Cone Image System for the period from 1986 to 2015. To examine the prevailing pattern of precipitation in west of Iran, we have used geostatistical methods of spatial autocorrelation. The changes in precipitation trends have been analyzed using parametric and non-parametric analyses of regression and Mann Kendal. We have used MATLAB for analysis of the data. We have also used ArcGIS and Surfer for drawing maps. The results of inter-decade changes of positive spatial autocorrelation of precipitation in west of Iran have indicated that there has been a decline in spatial extent of the positive spatial autocorrelation pattern in spring and fall, except for winter with a negligible increasing trend. Nevertheless, except for the second period, no considerable spatial changes were observed in the spatial pattern of precipitation in the region. However, there was a decreasing trend in the negative spatial autocorrelation of precipitation in annual and seasonal scales. The results of trend analysis have indicated that there was a decreasing trend in a vast area of the west parts of the country in annual scale and also in winter. Although there was an increasing trend in precipitation in fall and spring, but the trend was not significant in 95 % of confidence interval. The results of Man Kendal test have confirmed the results obtained from linear regression.
Fakhri Sadat Fateminia, Behrouz Sobhani, Seyed Abolfazl Masoodian,
Volume 18, Issue 48 (3-2018)
Abstract
This study was performed to evaluate the extent of leaf area in Iran from (2002) to (2016) using Remote sensing. For this purpose, we extracted data collection and leaf area index for the Iranian territory from MODIS website. The database was established with programming in MATLAB software to perform mathematical and Statistical calculations repeated. After the analysis of the data in this software a monthly average long-term map was developed. The maps show that the central, East and South-East are almost empty of leaf area or seen very sparse in some areas. In contrast areas of leaves in the northern and western parts of Iran, are good, which generally includes fields, except forest Arasbaran and Hirkany. Precipitation and the temperature, is the main factors for the growth and development of plants, that these two conditions are enumerated in the west due to being on the way of westerly winds. Lowest leaf area index is for January and February and the highest average of leaf area is for May and June. Next, study of 15 years of leaf area index data by cluster analysis based on the calculation of Euclidean distance and Ward method, showed that all 12 months fit in the two main groups and, in fact, divided for two periods of strong and weak vegetation. In this analysis, , April during the cold period and October in the warm period of the year as the transition months and they are located on a separate cluster
Meysam Toulabi Nejad, Dr Zahra Hejazizadeh, Mrs Atefeh Bosak, Mrs Nasrin Bazmi,
Volume 18, Issue 49 (3-2018)
Abstract
The purpose of this study was to investigate the effects of the North Atlantic Oscillation on the middle levels of Atmosphere and precipitation changes in the West of country. To do this, first monthly rainfall data of 17 synoptic stations of the West Country in period of 30 years from 1984 to 2014 of country were collected from Meteorological Organization. As well as North Atlantic Oscillation data and anomalies geopotential height data, sea level pressure and precipitation were received from NOAA. To clarify the relationship between the NAO index phase with precipitation of west of Iran used Pearson correlation coefficient was at least 95%, (P_value = 0.05). Finally, using synoptic maps, spatial relationships among data, were analyzed. The results indicate that between North Atlantic Oscillation changes with middle level height anomalies of the Atmosphere and the amount of precipitation in West of Iran in January, March, April and November there is communication and concurrency. The results showed that , at a time of sovereignty positive phase of the North Atlantic oscillation , an average of height atmospheric middle level in mid - western Iran 17 meters long - term and less than the average rainfall per month 23.5 mm increased and wetly sovereign. But when phase of governance is negative, high atmospheric middle level anomaly to an average of 20 meters more than normal. As a result, the drought will prevail in the west and precipitation in the region each month will face a reduction of 30 mm. In general, we can say that droughts more severe than wet coincide with the negative phase of the North Atlantic Oscillation is positive phase.
Hasan Zolfaghari, Jafar Masoompourv Samakosh, Shabnam Chahvari,
Volume 18, Issue 49 (3-2018)
Abstract
The purpose of this study is predicting climate changes and investigating the effect of probable climate change on the growing degree-days in the northwest of Iran. For this purpose the climatic data of seven synoptic stations during a 25 years period (1985-2009) was collected including Oroomieh, Tabriz, Zanjan, Sanandaj, Ghazvin, Kermanshah, and Hamedan were used as the base period and thus temperature variations periods (2030-2011 and 2065-2046) through HadCM3 model was simulated. For the little power of temporal and spatial distinction of this model, its outputs were downscaled using LARS-WG software and presented under Emission Scenarios including A1B (moderate scenario), A2 (maximum or pessimistic scenario), and B1 (minimum or optimistic scenario). Calibration, verification and Performance Model with the rate of the adaption of observed data and the simulated measures through statistics , RMSE and MAE were analyzed. Finally, using the simulated temperature growing degree-day was calculated and compared under 4 Base temperature including 0°,5°,10°, and 15° centigrade in the basic span (1985-2009) and future span (2011-2030 and 2046-2065). The results of simulation show that temperature change in north-west areas under all three A1B, A2, and B1 scenario are increasing in the future, but the differences among these three scenarios in each period is inconsiderable. In total the most temperature increasing was detected as 0/7 centigrade in A2 scenario for 2011-2030 period and 2/3 centigrade under A1B scenario for 2046-2065 period. Generally with the temperature increasing, the amounts of growing degree-day without exception increases in review periods and under the four Base temperature. Under studied scenarios, the Bases temperature of 0° centigrade had the most and 15° centigrade had the least impressibility from climate changes, so that the most increasing in calculated degree-day measures under 0° and 15° centigrade bases in the first period to the basic scenario (1985-2009) respectively was simulated as 207/4 and 120/6 degree-day under A2 scenario and for the second period to the 752/5 and 463/5 degree-day under A1B scenario.
Tayebeh Dehghani, Mohammad Saligheh, Bohloul Alijani,
Volume 18, Issue 49 (3-2018)
Abstract
In order to detect climate change, a variety of climate indicators can be used which is often considered temperature and precipitation. In order to investigate the effect of climate change on the amount of precipitation in the north coast of the Persian Gulf, it simulated the precipitable water for 2017-2050 based on the RCP4.5 model of the Hadcm3 model. The NCEP / NCAR base-station data with an arc-value of 0.125 was used to analyze the past and present precipitable water patterns and to reveal the process of this time series. Time series analysis of precipitable water was performed using two SENS tilt estimators and Man-Kendall test. The results indicated that the annual time series of rain water was increasing in the region, every year, 0.05 mm, the precipitated water increased and it tended to become more homogeneous, this increase in the significance level of 0.95. The precipitation rate in the eastern part of the region was higher than other areas. Before 1989, several fluctuations were observed in the rainy season of precipitable water, but none was statistically significant at the confidence level of 95%, but since 1989, the trend has increased significantly at a confidence level of 0.95. This spatial behavior of precipitable water can actually have occurred in response to the increase in the overall temperature of the area and can be considered as a profile of climate change in the region.
Ali Reza Rahimi, Ali Reza Karbalaee Doree, Mohammad Reza Karbalaee,
Volume 18, Issue 49 (3-2018)
Abstract
One of the most important parameters in maximal use of radiant energy is the proper deployment of photovoltaic. The purpose of this study was to determine the optimum setting and tilt for installing photovoltaic panel in Kashan city. For this purpose, using the Masters Gilbert physical relations and relationships, the radiation received on the surface of the panel is calculated. The results of this study indicate that the amount of radiation received on the collector's surface in the south and in different slopes, 64 percent of the time of year, is more than the radiation on the panel surface mounted in the direction of the southeast or west with different slope angles. The highest amount of radiation is in the Azimuth to the south at a gradient of 30 degrees and 40 degrees; Southwest Azimuth (30 degrees) is almost similar to the South Azimuth and only in the southeast west, in summer, glides near the verge, they receive more radiation than the south. The amount of radiation received on the surface of the panel in the direction of south east west (Azimuth 60 °) on different slopes in 87% of the year is greater than the radiation on the panel surface mounted east or west (90 ° azimuth) with different slope angles. By comparing the results, it turns out that the direction of the photovoltaic panel installation will change, as the south changes to the east or west, the intensity of radiation will decrease in the days of the year. The highest photovoltaic energy output in Kashan is in the direction to the south, and with the angle of installation of photovoltaic panel 30 degrees from the horizon line. The most suitable slope for mounting panels between 30 and 40 degrees was obtained from other slopes.
Professor Kamal Omidvar, Miss Nesa Sepandar,
Volume 18, Issue 49 (3-2018)
Abstract
In this study, the dust situation in 6 synoptic stations of Kermanshah province was investigated in the period 1987-1992. To study this phenomenon, dust days were extracted in 2009 with code (06) from the current air index. Then data from different bar levels were taken from the National Oceanic and Atmospheric Organization (NCEP / NCAR) database and maps were plotted in the Grads software. Finally, through the processing of MODIS satellite imagery, with the application of the brightness temperature index, round detection and the dust was made and its territory expanded. The results of the study showed that at low ground level, when the European high-pressure system retreated to the north and west, Sudan's low pressure existed in the eastern Mediterranean, and the system moved southwest to the northeast, and when they entered, the disturbance zone is caused due to the lack of moisture in the dust, the main sources of dust in the province of Kermanshah include the deserts of northern Arabia, southern Iraq, and somewhat north of the sub-Saharan Africa.
Sayyed Mohammad Hosseini,
Volume 18, Issue 49 (3-2018)
Abstract
Precipitation is a climatic elements that have temporal - spatial distribution. In this research database of Global Precipitation Climatology Centre (GPCC) with a resolution 0.5×0.5 degree for 50 year is used, that was constituted with dimensions of 12800*600. Temporal data are on the columns and pixels (spatial data) located on the rows. The results show an increasing trend in spring and fall but in summer and winter precipitation trend has been decreased. The most amount of precipitation is located in the northern parts of the Black Sea and Mediterranean Sea, Southeast Asia, southern coast of the Caspian and Central Zagros Mountains. Most of Middle East (about %95) have not trend and only in some parts of Kazakhstan, Afghanistan, Pakistan ,central Iran, and areas in lower-latitude have positive trend and some East and northwest parts of Iran and some parts of Middle East also have decreasing trend of precipitation. The highest percent of area of precipitation trend gradient is 0 to 0.5.
Mohammad Daraei, Dr Peyman Mahmoudi, Dr Behroz Sari Sarraf, Dr Ali Mohammad Khorshiddost,
Volume 18, Issue 50 (3-2018)
Abstract
Agricultural sector is most dependent on climate, and climate is the main determinant of time, location, production resources, and productivity of agricultural activities. The first event of zero-degree temperature in fall and its last event in spring is important for agriculture. This information is used to determine the species suitable for planting in each area. The present study seeks to identify the probability distribution function for extracting statistical characteristics of frost events in Iran. For this purpose, the history of early autumn and late spring frosts were extracted using daily minimum temperatures of 44 synoptic stations in Iran for a period of 30 years (1981-2010). After fitting various distributions, the best distribution was selected using Anderson-Darling goodness of fit test. Results indicated that most stations follow the Wakeby distribution. Based on the calculations, the first day of frost occurs in the highlands of the Northwest (Saqez, Hamedan, Ardabil, and Zanjan), Northeast (Bojnoord, Torbat-e Heydariyeh, Birjand, and also the Central Zagros Mountains (Shahr-e Kord), due to proximity with cold lands of the North such as Siberia and Northern Europe as well as early entry of westerly winds to this region compared to other regions of Iran will occur. And the latest event of the first day of frost occurs a little farther from the southern coast of Iran in a narrow strip along the coast and parts of the northern coasts (from Babolsar to Bandar Anzali). The earliest event of the last day of frost occurs in the same area in early February. The latest day of frost in Iran occurs in Azerbaijan, Kurdistan, Khorasan, and highlands of the province of Chahar Mahal and Bakhtiari
Mostafa Karimi, Mahnaz Jafari, Faramarz Khosh Akhlgh, Saeed Bazgir,
Volume 18, Issue 51 (6-2018)
Abstract
Spatio-temporal variations of factors affecting the occurrence of precipitation can lead to a change in its amount. The atmospheric moisture is one of the most important factors for precipitation formation. In this study, changes in atmospheric moisture and its relation with occurrence of seasonal wet and dry periods were investigated in Iran. The re-analysis data from the ERA interim European Center for Mid-Term Projections (ECMWF) was used during the period 1981-2011. The z index (ZSI) was used to extract wet and dry periods of autumn, winter and spring seasons. The seasons with the maximum percentage of wetness/drought occurrence during the above periods were selected. Vertical integrated divergence of the moisture flux was extracted in three layers of the lower, middle and upper atmosphere above Iran. The results revealed that in all three layers, moisture flux was maximum during wet period and decreased in dry one. In all layers in wet and dry periods, the moisture content imported to Iran increased during warm season as compared to cold seasons. In addition, the difference in moisture content in the warm season was less than cold seasons and has less variations. There was no significant changes in moisture at high levels in three seasons. In general, there was a significant difference in terms of the winds pattern in the wet and dry periods. The favorable conditions of flow patterns on the water surface of the region provide the condition for increasing transport of moisture to Iran. Although, the moisture transfer reduced due to deviation and change of direction of currents, in dry period especially in the lower layer, and hence increase the occurrence of dry periods in Iran.
Rahmatollah Shojaei Moghadam, Mostafa Karampoor, Behroz Nasiri, Naser Tahmasebipour,
Volume 18, Issue 51 (6-2018)
Abstract
The purpose of this study is to analyze and analyze Iran's precipitation over the past half-century(1967-2017). For this purpose, the average monthly rainfall of Iran during the statistical period of 50 years was extracted from Esfazari databases (Which is provided using data from 283 stations of Synoptic and Climatology). Regression analysis was used to analyze the trend and to analyze the annual and monthly rainfall cycles of Iran, spectral analysis was used. Investigation and analysis of monthly precipitation trend indicates that except for central Zagros (Lorestan and Chaharmahal va Bakhtiari and Gorgan areas, where rainfall in winter season has increased trend), in other parts of the country and in other seasons, the trend of decline Precipitation is prevalent. The study of Iranian rainfall cycles has been shown that Most of Iran's rainfall cycles are 2 to 4 years old and have a short term course. Meanwhile, there are two middle-cycle 25-year cycles in January-July and two long-term 50-year cycles in March and December, indicating a trend in the March and December rainfall. The two months of February and October lacked a clear cycle. The analysis of the auto-correlation model of rainfall showed that the high spatial auto-correlation model in winter was consistent with the western, southwestern and coastal of the Caspian Sea and covered about 14% of the country's. The low spatial auto-correlation model is found in sparse spots in the southern, central and southeastern regions of the country in winter and spring, and covered about 7.5% of the country's. The results of this study indicate that the overall trend of Iran's rainfall is decreasing trend and only in winter, in the small regions of the country, the increase trend is observed.
Hossein Imani Pour, Abdolreza Kashki, Mokhtar Karami,
Volume 18, Issue 51 (6-2018)
Abstract
Heating requirements are one of the most important human issues in the fields of agriculture, tourism and energy management in the present and future .Knowing the extent of these changes can be very effective in making decision makers. The purpose of this study is to examine the changes in the requirements of the heating degree day in conditions of climate change in southern Khorasan province. For this purpose, daily data from the minimum and maximum temperature of 11 stations of the South Khorasan province were received from the Meteorological Organization of Iran during the period of 1990-2015. The latest available scenarios of the fifth report of the Climate Change Interagency Panel (AR5 2014) include RCP scenarios from the Canadian Climate Change website and, using the SDSM macroeconomic statistics software, the data for the upcoming period (2016-2046) in the study area was thrown off. Using the Matlab software capability, the monthly and annual heating requirements of the stations were calculated in the current and future period. Finally, using the Kriging interpolation method, the zoning maps for cooling requirements for the current and future period are mapped in ArcGIS software. By examining the effect of geographic features (latitude and longitude and station height) on the heating needs in the area, it was determined that the role of heights is very effective in changing the heating needs. In the cold months of the year (Azar, Dey and Bahman), the highlands (Qain, Arsak, Fath Abad, Aryan Shahr, Darmian) require higher energy levels due to the need for higher temperatures. Increasing the temperature and warming of the air in the future, especially in the months of Farvardin and Mehr in most places, requires less use of exhaustible equipment in the future.
Yousef Ghavidel Rahimi, Manouchehr Farajzadeh, Esmaeel Lashani Zand,
Volume 18, Issue 51 (6-2018)
Abstract
In this study, the changes in the Khorramabad storm in the period of 1952 to 2015 have been investigated. For this purpose, data from meteorological codes 06 and 07 were received from the Meteorological Organization of the country, and after identifying the days of winding with dust storms and calculating their monthly frequency, monthly, seasonal and annual time series were analyzed. In this study, descriptive statistics, cluster analysis, linear and polynomial trend analysis, and nonparametric Mann-Kendal test were used to study the frequency variation of dust storms in Khorramabad station. The results of the research showed that the monthly frequency of dust storms in Khorramabad station in the middle of May, July and June is May and July, respectively, and from May to July (May to July), the frequency of storms in the dust and dust Khoramabad station is added that this issue is not related to the district heating and dry season. In the seasonal season other than the autumn, which is not frequent with frequent dust storms, in the rest of the seasons, especially in spring and summer, the seasonal concentration of dust storms in Khoramabad has been intensified. The analysis of the trend of time variation in the occurrence of dust storms in Khorramabad station showed that in most of the months of the year and in the three seasons of spring, summer and autumn, as well as in the annual period, there was a significant change in the frequency of dust storms in Khorramabad station. It is increasing with a relatively steep slope, indicating that in the future, the frequency of dust storms in Khorramabad station will be increased.
Sayyed Mohamad Hosseini, Abdolhossein Adelzadeh,
Volume 19, Issue 52 (3-2019)
Abstract
In this research, applied synoptic model for determining the average daily temperature and its relationship with the Geopotential Height in middle level (500 HPa). Therefore, two database were used: database of atmospheric circulations, includes the data of geopotential height at 500 HPa and its data were extracted from the NCEP/DOE(US National Oceanic and Atmospheric Administration) in hours 00:00; 03:00; 06:00; 09:00; 12:00; 15:00; 18:00; and 21:00 in Zulu and other, database of environmental (surface) events. Contain of average daily temperature in the Mashhad, Torbat-Heydarieh and Sabzevar stations in Khorasan Razavi Province. The maximum and minimum of these stations in the time interval from 01/01/1987 to 01/01/2014 equal as 9862 days from the meteorological organization of Iran. Then, was calculated the correlation of the average daily temperature of selected stations with high atmospheric data (500 HPa level) with the northern hemisphere in Surfer Software. The result shown, four regions in the northern hemisphere which had high correlations with selected stations. The correlation results suggest that the United States has 25 pixels, Northern China 25 pixels, Africa 45 pixels and Japan with 65 pixels. Then, weighted average of pixels in heights by multiple regression equation station. The results of diagnostic models indicate that, per geopotential height increase in the profile, the average daily temperatures of selected stations in the Sabzevar 1.4, Torbat-Heydarieh 1.3 and Mashhad 1.3 degrees Celsius will increase.
Mr Soleiman Pirouzzadeh, Mahmood Khosravi, Samad Fotohi,
Volume 19, Issue 52 (3-2019)
Abstract
Studies show that 14 provinces are impacted by wind erosion and the movement of sand dunes. The sand originated from the shores of Oman Sea is the most important environmental hazards that threaten the already large number of rural settlements. Sands of marine origin are available on the beach and away from the sea of dunes in addition of marine origin, Predictive models for planning sustainable use of land use and land cover in a country like Iran that land use is changing rapidly, there is an urgent need; To detect and predict changes in land cover changes overview to better manage natural resources and protect marginal lands beaches and is very effective long-term policy measures. The aim of this paper is modeling and prediction of changes in land-use in 2035 by using CA Markov model and Landsat satellite images in the West of Zarabad,( The coasts of Makran). Then to determine the changes in the movement of sand dunes in the study area ranged from twenty-three years (1991-2014), satellite imageries from Landsat 7 and 8(ETM+ sensor) with 15 and 30 meters spatial resolution , was used. The 1991, 2001and 2014 month August images were used, this images from website of the US Geological Survey (USGS) have been prepared. Finally, these images by using Geographic Information System (GIS), ENVI and IDRISI softwares were analyzed. The results showed that the changes in the region the largest increase in the interest of sand dunes in the year 1991 (25.561) km², in 2001 (10 . 568) km², and in 2014 (45.578), and the increase of (17.198) km², has experienced. The results also estimated that in future (2035) sand dunes area increase to 592.45 km².This increase in area of sand dunes occur in the absence of proper and efficient management is done in order to stabilize the sand. This increase resulted from changed moorland 162 km²of land area (27%) and 12 kilometers of vegetation (2%) and 23 km² of fluvial (3.4%). These changes makes heavily exposed about 6 villages (Karti,Gnjk, Sohroki, Pyvshk, Vanak and Kalirak) to the movement of running sands.
, , ,
Volume 19, Issue 52 (3-2019)
Abstract
The heat waves today are one of the most important climatic hazards in the world. According to many scientists, the Severe and frequent occurrence of heat waves in recent years has been due to the emission of greenhouse gases and consequent increased global warming. The purpose of this study is to investigate changes in the frequency and intensity of heat waves As well as their relationship with Global land-ocean temperature anomalies and greenhouse gases in the north-west of Iran. At First, maximum temperature of two meters of the surface during the period from 1851 to 2014 for 164 years was obtained from NASA’s website, then the maps of heat waves was drawn and extracted. Then, we analyzed and evaluated the frequency and severity of the heat waves, as well as changes in the annual, decade, fifty years old fluctuations and their centenary were analyzed. To achieve the research objectives, Pearson and Spearman correlation methods, linear and polynomial regression and non-parametric Mann-Kendall test were used. The results showed that the frequency of occurrence of heat waves in the considered period interval is incremental and relevant, and the most frequency of occurrence was in decades. Also the intensity of the heat waves is associated with a relatively significant increase, and the most intense heat waves occurred in the decades of the late 20th and early 21st century until the present period. The results of the correlation coefficients indicated that the intensity and frequency of the heat wave incidence have a positive and significant correlation with the Global land-ocean temperature anomalies. The results of investigating the relationship between frequency and intensity of heat waves with 4 important greenhouse gases, including: (CO2, CH4, N2O, SF6), showed that, except for the positive and significant correlation of carbon dioxide gas with the most severe heat waves in June, There was no meaningful relationship between them. The results of the Mann-Kendall test indicate an incremental and significant increase in the frequency and intensity of heat wave events in the North-West region of Iran.