Dr Batool Zeinali, Sima Khalili, Saideh Eiyni,
Volume 19, Issue 53 (6-2019)
Abstract
The aim of current research is atmospheric hazards climate zoning in Iran Northwest. So meteorological organization data were used in cases such as mean temperature , minimum temperature , maximum temperature, precipitation in monthly and daily scale for 13 synoptic stations in range of East Azerbaijan province, West Azerbaijan province) and Ardebil province during 26 years. (1990-2015) in this research , it was investigated 10 main atmospheric hazards such as famine or drought , hailstone,, heavy snow , thunder storm, severe precipitation, margin precipitation , blizzard , fogging , dust storm in range of Northwest bound. Then happening frequency maps were prepared with separating form for hazards by using Geographic information system. (GIS) Also spatial zoning maps were prepared for every class. Finally by combining all of hazards investigation; it was prepared Northwest region atmospheric hazards extensive map. Results show that, East, Southeast, center and West parts in Northwest region are located among most hazard zones based on happening frequency. But Northeast parts and zones have the least hazards. Also results express that blizzard and dust storm are main atmospheric hazards at Northwest regionThe highest hazard frequency in Northwest region relate to blizzard with 4148 hazards during 1990-2015 study period. The highest blizzard frequency in Ahar station is observed with 514 hazards. The second hazard in Northwest relate to dust phenomenon with 1948 cases. The highest frequency of mentioned case was observed in Maragheh station with 410 hazards. The third case in Northwest relate to thunder storm phenomenon with 1773 hazards. The sixth case relate to icing phenomenon with 1315 hazards meaning. The highest icing frequency is observed in Khalkhal station with 144 hazards. The seventh case relate to hailstone phenomenon at Northwest with 341 hazards. The highest of hailstone frequency is observed in Maragheh station with 56 hazards. The eighth case relate to fogging phenomenon with 333 hazards. The highest of fogging is observe in Ahar station with 135 hazards. The ninth case relate to famine or drought phenomenon at Northwest with 168 hazards. The highest of famine or drought frequency is observed in Urmia and Ardebil stations with 16 hazards totally. The highest margin precipitation is observed in Parsabad station with 19 hazards. The lowest frequency of margin precipitation relate to Makou and Khalkhal stations with 4 hazards totally.
Shadieh Heydari Tasheh Kaboud, Younes Khoshkhoo,
Volume 19, Issue 53 (6-2019)
Abstract
The aim of this research is the study of the climate change impacts on the seasonal and annual reference evapotranspiration time scales in some selected stations located in the West of Iran. To this purpose, four stations including Sanandaj, Saghez, Khorramabad and Kermanshah synoptic stations with enough long-term data were selected and the climate change impact on the reference evapotranspiration of these stations under two RCP2.6 and RCP8.5 scenarios in three future time periods including 2011-2040, 2041-2070 and 2071-2100 in comparison with the 1970-1999 base period was studied. The FAO-Penman-Montieth method was applied to calculating reference evapotranspiration and the CanESM2 general circulation model and SDSM downscaling method were used to simulating future climate conditions under the climatic scenarios. The results showed that the mean reference evapotranspiration in the annual and autumn and winter time scales in comparison to the base period will significantly increase for all of the studied stations under all of the scenarios and periods at the 0.01 confidence level. For spring season, the only significant change of the future period mean reference evapotranspiration compared to the base period in the all of the studied area will be a significant increase at the 0.01 confidence level in the 2071-2100 period under the RCP8.5 scenario and for the summer season, this significant increasing rate will occur in the 2041-2070 and 2071-2100 periods under the RCP8.5 scenario. The overall results of this research showed that the highest increasing rate of the future periods in comparison with the base period for all of the seasonal and annual time periods and for all of the studied area will under RCP8.5 scenario and in the 2071-2100 time periods. by comparing the reference evapotranspiration change rates between the different seasonal and annual scales, the results showed that the increasing rate of the mean reference evapotranspiration at the West of Iran will be very remarkably in the autumn and winter seasons compared to the other time scales.
Taher Safarrad, Mehran Mansourinia, Hersh Entezami,
Volume 19, Issue 53 (6-2019)
Abstract
Population growth and urbanization development are the main triggering factors of changes in urban land uses. These, in turn, result in changes in the components of radiation balance. The present study tries to analyze the role of urban land uses in radiation balance by calculating net radiation and its analysis. For this purpose, the Landsat 8 satellite image of 2016 was used. Characteristics of radiation flux including net radiation flux (RN), ground surface albedo (α), incoming longwave radiation (RL↓), incoming shortwave radiation (RS↓), outgoing longwave radiation (RL↑), and ground surface temperature were computed using Sebal algorithm.The values of these components in different land uses (compressed residential, scattered residential, green area and wastelands) were analyzed using one-way analysis of variance (ANOVA) and Tukey’s test. The results of this study showed that the selected land uses have significant differences in the amount of radiation flux, therefore the wastelands are warmer than the residential areas by about 6 oC and the residential areas are warmer than the green areas by about 1.5 oC. The results also indicated that these differences are due to changes in output energy (α and RL↑), and any change in land use over time will ultimately lead to a change in the radiation balance and the temperature of those places, which this temperature increase, is different from the increase of the temperature due to global warming.
Mohammadreza Goodarzi, Atiyeh Fatehifar,
Volume 19, Issue 53 (6-2019)
Abstract
In the present time, with the increase of industrial activities and the neglected environmental issues, the effects of climate change have become more evident and poses this phenomenon as a global difficult. Increasing the probability of occurrence of extreme climatic events such as flood and increasing the frequency and intensity of the effects of climate change. The northwest of the country is one of the most vulnerable areas of the country due to its semi-arid and mountainous climates and high rainfall variability. Therefore, zoning due to climate change is essential. Therefore, in this study, in order to investigate the risk of flood in the Azarshahr basin, due to climate change, using the CanESM2 general circulation model under RCP8.5 scenarios negativity according to the assessment report fifth IPCC, rainfall and temperature variables were down scaling by Statistical down scaling model (SDSM). Then,with hydrological model SWAT the daily runoff, the basin map and the lines of the canals are achieved. The results of the evaluation of the SDSM model with a coefficient of determination and Nash-Sutcliff 0.95 on average represent the good performance of the model in the down scaling of large scale data. The results show an increase of 0.23 ° C and 4.53% rainfall and maximum discharge. The basin is zoned with the combination of the maximum mean discharge map, the coefficient and distance from the river with the AHP approach. Due to the zoning they are 41.55% of the area of the basin, at very low and low risk, 27.23% at average risk and 31.2% at high and very high risk. Also, with the final map, it became clear that the mid-basin had a high risk due to its prerequisite conditions and that it needed to carry out managerial actions.
Elham Yarahmadi, Mostafa Karampoor, Hooshang Ghaemi, Mohammad Moradi, Behrouz Nasiri,
Volume 19, Issue 53 (6-2019)
Abstract
Investigating of rainfall behavior in the spatial-temporal dimension and determining the tolerance thresholds of different geographical areas with respect to vegetation, animal life and human activities, is essential for any decision in the environment. Therefore, precipitation data of 27 stations were received from the Meteorological Organization during the 60-year period and After the data were evaluated qualitatively, The distribution of temporal and spatial mean, coefficient of variation, skewness and probability distribution of 20% maximum and minimum monthly and seasonal autumn and winter, for a period of 60 years (1951-2010), two 30-year periods (1980-1951), (1981- 2010) and two 10-year periods (2010-2001), (1951-1960) were calculated and were zoned using GIS. Studies show, except on the shores of the Caspian Sea, there is little change between autumn and winter patterns. The average rainfall of the southern shores of the Caspian Sea has decreased to the west and east. in other areas of the country, the spatial and temporal variations of rainfall in the autumn are very highand from the north to the south, the mean decreases and the coefficient of variation and skewness increase. In winter, maintaining the pattern of autumn, the average precipitation increases and the coefficient of variation decreases. The average precipitation of 30 years and 10 years of the second winter season, compared to the first 30 years and 10 years, and also the 60 year period, has decreased in most stations, which is consistent with the results of the Mannkundal test. Analysis and review of the 20% minimum and maximum seasonal rainfall show that the intensity and range of performance of winter precipitation systems in the second 30 years have decreased. Also, the frequency and severity of drought in the autumn season have increased in the second 30 years and in the last 10 years. The highest decline occurred in the western and eastern parts of the Caspian coast and in the northwest, which requires special attention to managers in light of the areas of activity and concentration of the population.
Saeed Javizadeh, Zahra Hejazizadeh,
Volume 19, Issue 53 (6-2019)
Abstract
Drought is one of the environmental events and an inseparable part of climatic fluctuations. This phenomenon is one of the main characteristics of the various climates. Awareness of spatiotemporal behavior is effective in land planning. The spatial statistical methods provide the means by which they analyze the spatial patterns of random variables such as precipitation. In this study, using the rainfall data of 84 selected synoptic stations during the period of 30 years (1985 to 2014) in Iran, the spatial analysis of drought has been investigated. Initially, using SPI values (timescales 3, 6, 12, 24 and 48 months), drought and traumatic periods of the area were identified and using the Geostatistic Analyst extension, the drought was zoned by interpolation methods. Moran statistics were used to explain the pattern of drought in Iran. The results of Moran index for drought showed that the values for different years during the statistical period have a positive and close to one, indicating that the SPI drought index data has spatial self-correlation and cluster pattern. Also, the results of Z score and P-value values, clustering of a spatial distribution of drought, were confirmed.
Dr Mahmoud Hooshyar, Dr Behrouz Sobhani, Nader Parvin,
Volume 19, Issue 54 (9-2019)
Abstract
Early heat waves are extreme events that cause heavy losses in plant and animal life and cause many social and economic problems for communities. The purpose of this study was to identify synoptic patterns and statistical analysis of preterm heat waves in northwestern Iran. To do this, the maximum daily temperature data of March 14th was used for fourteen synoptic stations in the northwest of the country during the statistical period (1333-1393) Hijri Shamsi. Then, on the basis of the threshold, the Baldy index was selected for 61 days of heat wave. All statistical characteristics of the data were processed in SPSS software. They were The elevation data of the middle atmosphere of the atmosphere was extracted from a NCEP / NCAR database on a network with an arc 2/5 × 2/5 degree on the 0 to 70 degree eastern longitude and 0 to 60 degrees north latitude. The matrix was made up of 864 columns in 40 rows, with rows of days with thermal waves and elevation data on the columns on the middle of the atmosphere. The analysis of the basic components was performed on the algebraic data matrix matrix And 12 components that account for about 93 of the variations in pressure levels above 500 hp, were identified. To identify the coherent patterns, cluster analysis was performed on the scores of the components by the WARD integration method. Five types of pre-heat generation waveform patterns were identified. The results of this study showed that the premature heat waves in the northwest of Iran are due to high altitude formation in southern Arabia, the Aden valley and the center of Sudan at a level of 500 hpa and the formation of Sudan's low pressure in the sea level and the discharge of its tabs to the north and northeast of the region The case study (Northwest of Iran) also includes events occurring.
Dr. Ebrahim Fattahi, Shookat Moghimi,
Volume 19, Issue 54 (9-2019)
Abstract
In this study in order to monitor snow cover, the Moderate Resolution Imaging Spectroradiometer (MODIS) optical images were used, while for detection of snow covered areas, the snow index-NDSI, was applied. The results showed - according to the climatic conditions of the region- during the following months: December, January, February and March, most of the area is covered by snow and the maximum extent of snow cover occurred in January. In West Azerbaijan province there is found a negative trend of snow cover with a drastically reduction in January, as well as the provinces East Azerbaijan and Ardebil showed the decreasing of snow cover in this month. The results of this study show that, changes in snow cover imply a rise in temperature in this region leading to the reduction of snow cover in January. This trend represents global warming and climate change impacts on snow cover in the study area. Investigation of extreme indices confirms the assumption that by taking temperature increase into consideration, regional winter precipitation pattern has been changed from snow to rain, causing the reduction of snow storage in the catchment of study area. In addition ,the extreme temperature index study in the period of 2011- 2040 and the baseline by considering climate change approach in North West of Iran by using outputs of general circulation models under A2 scenario and downscaling models LARS-WG indicates the number of frost days or the number of icy days decreased compared to the baseline which is not unexpected according to reports by the Intergovernmental Panel on Climate Change (IPCC) as well as several studies confirmed global warming. Moreover, indices such as growth period increased, while diurnal temperature variation decreased compared to the baseline confirming snow cover reduction in the region as a threat of snow storage in the region.
Msc. Graduated Student Najmeh Daneshvar-Marvast, Dr Somayeh Soltani-Gerdefaramarzi, Dr Samaneh Poormohammadi,
Volume 19, Issue 55 (12-2019)
Abstract
The phenomenon of evapotranspiration causes water and moisture losses from water, soil and vegetation levels. Due to the small amount of atmospheric precipitation and water resource constraints in Iran, it is important to calculate it through a suitable method. The present research attempts to evaluate the evapotranspiration reference crop (ETo) and present it in the form of zoning map as a basic tool for water management. In this study, the long-term average of seven meteorological stations and evaporation pan data were used to determine the appropriate ETo estimation method. Evapotranspiration of reference crop was calculated to 14 methods the based on climatic information in each station. Computational methods including combinational methods Penman-based, radiation-temperature method, temperature method and radiation method. The most appropriate computational method was selected based on the R2 and Nash -Sutcliffe statistics. The zoning of evapotranspiration of reference crop was carried out based on the geographic information of the meteorological stations and the GIS software. The results of the research indicate that the best method for this region as the cold and moderate climate are FAO radiation and Blaney-Criddle. Also, the zoning result shows that west of the catchment has less evapotranspiration rather than its east. Sunshine hours, maximum temperature and wind speed were the most effective factors for evapotranspiration in this area by sensitivity analysis.
Hosseinali Roohbakhsh Sigaroodi, Mostafa Karampoor, Hooshang Ghaemi, Mohammad Moradi, Majid Azadi,
Volume 19, Issue 55 (12-2019)
Abstract
Investigating the variability of the spatial-temporal pattern of rainfall, which can lead to climate change, due to its strong impact, is of interest to various scientists. For this purpose, after receiving the daily precipitation data of 27 stations for the period of 60 years (2010-1951), its quality and the total monthly precipitation and statistics necessary for the continuation of the research process such as mean, coefficient of variation, skewness, probability estimate of 20% The upper limit of the maximum and minimum rainfall average were calculated experimentally for a period of 60 years and two 30-year periods (1951-1980 and 1981-2010) and two periods of 10 years (1951-1960 and 2010-2001) for each of the spring and summer seasons Was calculated. The studies show relatively modest variations in spring and summer precipitation patterns on the Caspian coast, Northwest-West, 30 and 10 years old, compared to the 60-year, 30-year, and 10-year periods. In general, the mean of precipitation decreases from north and northwest to south and south east and increases the amount of coefficient of change and skidding. Except for the Caspian Basin, in the remaining stations, the average spring precipitation is higher than the average summer rainfall. There is a clear difference in the long-term characteristics of precipitation and its changes. It is worth mentioning that the increase in the coefficient of variation of the 30-year and 10-year periods is comparable to the corresponding periods at all stations, which indicates a decrease in the monthly and seasonal mean of spring and summer precipitation, which confirms the results of the decade and the first decade of the second decade. The greatest decrease occurred in the northern and western parts. In the second 30 years, the incidence of dry sunshine and drought-affected stations has increased. Therefore, it confirms the climate change for the Caspian and the Southwest coast.
Hossein Naserzadeh, Fariba Sayadi, Meysam Toulabi Nejad,
Volume 19, Issue 55 (12-2019)
Abstract
This research was carried out with the aim of understanding the spatial displacement of rainfall nuclei as an effective factor in the future hydrological conditions in Iran. Two types of databases were used to conduct this research. The first type of data is the monthly precipitation of 86 synoptic stations with the statistical period of 1986-1989 and the second type of predicted data from the output of the CCSM4 model under the three scenarios (RCP2.6, RCP4.5, and RCP6) from 2016 to 2036. After collecting and modeling the data, the maps were mapped to the ARCGIS environment. The results of the study showed that the terrestrial nuclei in the whole of Iran's zone in the four seasons will have changes with a negative trend in the future. The coefficient of rainfall variation in the spring, summer, autumn and winter seasons will be 61.4, 101.4, 58.9 and 55.8 percent, respectively. The results of the triple scenario study showed that the displacement of the spring core from all north north of the country to the northwest of the country is limited to the common borders of Iran, Turkey and Armenia (the Maku and Jolfa region), but in summer, the high core The northern shores and parts of the northwest of the country will be transported to the south of the country (around Khash and Saravan). In the autumn, the high-lying zone, which is located throughout the northern part of the country, will move to two distinct nuclei in the central Zagros (Dena and Zadkouh areas) and southwest Khazars (Anzali and Astara areas), and the core of winter from the central Zagros And the Caspian region will be transferred to the northwest of Kurdistan and southwest of West Azarbaijan, which will be seen in all scenarios. Another point is that, in addition to reducing the boulders, in the future, drought areas will cover more of the country.
Dr Dariush Yarahmadi, Dr Amanolah Fathnia, Mehdi Sherafat,
Volume 20, Issue 56 (3-2020)
Abstract
Abstract
The extention of Snow cover and its spatial and temporal changes considered as a basic parameter in climatic and hydrologic studies. Data from satellite images due to the low cost and the large extention of cover are, effectively help the identifying of the snowy basins. Since the satellites are able to imaging a surface at different times, this will allow snow survey studies to investigate the spatial and temporal distribution of snow. In this research, Snow line changes and the surface temperature line in Alborz Mountains using NOAA-AVHRR satellite images since 2006 from 2015 was studied. The results showed that at the study period, maximum area of snow have been observed in April 2015, with the amount of 12051 square kilometers and the minimum area snow have been observed in June 2008, with the amount of 33 square kilometers. The average of the lowest elevation of snow covered areas, have been observed in April 2007, with the amount of 2662 meters and its highest value have been observed in June 2008 with the amount of 3820 meters. Also the most of the snow line change occurred between the years 2007 to 2008. Moreover, in almost of 15 years, the isoterm of zero degrees Celsius, matches with the snow line and its elevation has changed as the snow area is changed.
Alireza Entezari, Fatemeh Mayvaneh, Froogh Khazaeenejad,
Volume 20, Issue 56 (3-2020)
Abstract
The purpose of this research is to study the comfort conditions and determine the best measures for design and architecture compatible with the climate in Yazd. In this regard, the climatic data of Yazd city has been used in EPW format during the period (1981-2017). The results of the study of temperature and relative humidity also showed that temperatures of more than 38 ° C are visible in June and July. This suggests the need for a shadow in the architecture of the climate. In July, the discomfort conditions prevail over the entire day. From June to October (midday to midnight), midnight hours due to low humidity (38%) and high temperatures, conditions of discomfort and drought are very visible. The highest humidity is in the cold months of the year. In the wind hours of February to May (February to April), there is a discomfort. Also, according to the overall radiation pattern at different hours of the day, it was also shown that 25% of the daylight hours is very high and non-comfort, and 8% are in comfort conditions, which is more related to the cold weather of the year and the early hours And the end of the day. In general, due to the climate of Yazd city and the results of analysis, 20 strategies for architectural design have been used.
In general, due to the climate of Yazd city and the results of analysis, 20 strategies for architectural design have been used.
Mokhtar Karami,, Rahman Zandi,, Jalal Taheri,
Volume 20, Issue 56 (3-2020)
Abstract
In recent years with the development of cities coatings of the Earth's has changed surface. These changes have caused some urban areas to have a few degrees higher than the surrounding temperature. This phenomenon is known as thermal islands. Mashhad is one of the major metropolises in Iran with the problem of thermal islands. Various parameters affect the formation of thermal islands in this city that should be considered. In this study TM, ETM+ and OLI images were used to obtain surface temperature over the period 1987-2016. The study of temporal variations in surface temperature showed that in the studied period, thermal islands were transferred from outside the city to the city. The model for describing the temperature of the surface of the earth has changed and has diminished from the temperature of the city's moderate and cool temperatures, and in contrast, the amount of high temperatures (thermal islands) has increased significantly. The TOPSIS method was also used to obtain the thermal forming factors. 13 natural and human factors affecting the formation of thermal islands were identified. Each expert opinion factor was used to determine the degree of importance. According to experts, the distance from the sanctuary with a weight of %234 and traffic of %155 is the most important and the height with a weight of %022 is least important in the formation of thermal islands. The final results obtained from this model showed that the factors affecting the formation of thermal islands are well recognized and the temperature decreases with these factors.
Mehdi Asadi, Mokhtar Karami,
Volume 20, Issue 56 (3-2020)
Abstract
The purpose of this study is to determine the evapotranspiration in Fars province that in many studies such as hydrological balance of water, irrigation systems design and management, simulation of product volume and management of water resources is very important. To do this, first, required data such as daily temperature, humidity, precipitation, wind speed, solar radiation pressures, solar radiation, etc. was collected. We used 12 stations with the same statistical interval, for the period 1995-2015. In order to estimate the evapotranspiration of the reference plant in different growth stages, Torent White, Penman-Monteith and Hargreaves-Samani methods were used. Results showed that with decreasing latitude, the evapotranspiration rate increased, and the highest rate of evapotranspiration occurs in the south, southeast and the center of the study area. The correlation coefficient R2 between height and White Penman, Monteith and Hargreaves Samani, are 0.9135, 0.53223 and 0.5286 respectively.
Mr Behroz Sobhani, Mr Vahid Safarian Zengir, Ms Akhzar Karami,
Volume 20, Issue 57 (6-2020)
Abstract
The limitations and boundaries of agricultural production is dependent on climatic conditions. Weather is one of the most important factors in human activities, especially agriculture. Corn cultivation in the country's food supply is essential. Kermanshah province, with the potential favorable climate, optimum conditions for corn are cultivated. The aim of this study was to investigate the role of precipitation and temperature in determining the agricultural calendar and to determine suitable areas for planting corn. To do this, climate data from 10 synoptic stations during the period of 20 years (1390-1371) were used. Use, Hoteling test and test observational data were analyzed. According to research, the station is under study, corn crop water demand in the months of June, July, August and September not secure and High temperature areas due to reduced need frequent in the months of May and June and in the lowlands due to a sharp increase in flowering time, seed maintenance and handling problems during the growing season makes this crop. Based on the results of Hotelling test 62 percent of the land area suitable Kermanshah province, 24 percent and 14 percent for maize is unsuitable. And also based on the results of t-test found 47 percent good, 38 percent moderate and 15 percent are unsuitable for corn. As a result, the central area of moderate temperatures for planting, eastern and northern areas of the southern and western areas of the province due to tropical cold and not suitable for maize cultivation.
Reza Reza Borna, Nasrin Nasrin Jafari, Farideh Farideh Asadian,
Volume 20, Issue 57 (6-2020)
Abstract
In order to understand the total consumption of buildings and accurately calculate how much energy each building uses, taking in consideration all the building's lifecycle phases is essential. In order to select the correct methodology for the main study, the researcher began with the determination and the parameters that would have been researched, as well as the analysis and comparison of the different methods used by other researchers to achieve similar goals. The following parameters define the final results and are stabilized or examined to determine their actual effect: A- Constant parameters: 1- Climate data 2- and data on the use of the building: B- variables: 3- Design data: 1- orientation 2- window to wall ratio 3- aspect ratio. This research uses a survey followed by a computer modeling methodology to achieve the goal of providing architects with techniques that reduce energy consumption in building units. To obtain reliable results that are useful to the construction industry in the country, the researcher has ensured that the virtual environment created in the modeling process mimics a typical building environment of Tehran units. Research has shown that passive design techniques have a major impact on the energy consumption of buildings. A significant reduction in consumption (67 percent) was noted when the orientation and percentages of the opening on the wall were changed. In summary, this study has shown that the application of passive, economical and simple design techniques has a major impact on the energy consumption of the unit rooms. If the architects take these ideas into account during the design process, the buildings will take on more responsibility for the environment and consequently reduce carbon dioxide emissions.
Mohammad Hossein Nasserzadeh, Zahra Hejazizadeh, Zahra Gholampour, Bohloul Alijani,
Volume 20, Issue 57 (6-2020)
Abstract
The plant community in an area is the most sensitive indicator of climate. A visual comparison of climate and vegetation on a global scale immediately reveals a strong correlation between climatic and vegetation zones and this relationship, of course, are not co-incidental. The main object of this study is to reveal the spatiotemporal association between climatic factors andvegetation Cover (NDVI) incorporate MODIS and TRMM product in Kohkiloyeh O Boirahmad province of Iran. So that the in this paer we use MOD13Q1 of MODIS product as NDVI layer for study area. MOD11A2 as landsurface temperature and 3B43 TRMM as meanmonthly accumulative rainfall for study area during 2002 to 2012 in 0.25° spatial resolution also were used as climatic factors. We use the correlation and cross-correlation analysis in 0.95 confident level(P_value =0.05) to detection the spatial and temporal association between the NDVI and 2 climatic Factor(LST and rainfall). The results indicated that during winter (December to March) the spatial distribution of NDVI is highly correlated with LST spatial distribution. In these months the pixels which have the high value of NDVI are spatiallyassociated with the pixels which have highest value of LST (6 to 14C°).As can be seen in table 1. Season the spatial correlation among NDVI and LST is so high which is statistical significant in 0.99 confident level in winter. In transient months such as May, October and November,(temperate months in study region ) the spatial correlation among NDVI and LST is falling to 0.30 to 0.35 which is not statistical significant in 0.95 confident level. Finally in summer season or warm months including Jun to September, we found the minimum spatial association among the NDVI and LST.. In temporal aspect we found that the maximum correlation between NDVI and LST simultaneously appears and not whit lag time. The spatial correlation of NDVI and TRMM monthly accumulative rainfall was statistical significant in spring season (April to Jun) by 1 month lag time in remain months we don’t find any significant correlation between NDVI and rainfall.
Leyla Sharifi, Saeed Bazgeer, Hosain Mohmmadi, Alireza Darbaneh Astaneh, Mostafa Karimi Ahmadabad,
Volume 20, Issue 57 (6-2020)
Abstract
In an agricultural system, crop production is related to climatic conditions. Therefore, a deeper understanding of the impact of regional climate change on production ensures global food security. Wheat is one of the most strategic crops and examining different aspects of its production is a necessity of every agricultural community. According to studies, wheat production is affected by various variables including environmental, individual and social, economic and technological. The aim of this study was to estimate the effect of these variables on changes in wheat production in different climates of Fars province. The required data were collected and analyzed through multi-stage random stratified sampling and 522 completed questionnaires through face-to-face interviews with farmers in the province. Farmers' attitudes were measured in the Likert scale and Cobb Douglas, Transcendental and Translog production functions were used to estimate the effect of variables. Results of comparing effective variables in three Cobb-Douglas, Transcendental and Translog functions; demonstrates the superiority of translog. From the perspective of the farmers of the province in the translog function, respectively; Soil moisture at planting time (0.692), effective rainfall during growing season (0.68) and at planting date (0.66), heat wave at harvest time (0.63), damaging rainfall (0.59) , Profit from wheat production (0.51), farmer education (0.49), soil quality (0.49) and cultivation method (0.49) with the coefficient of the mentioned criteria next to them; The most important factors explaining wheat production in Fars province. Independent variables in the translog function explain 92% of the changes in wheat production in Fars province.
Ali Bahri, Younes Khosravi,
Volume 20, Issue 58 (9-2020)
Abstract
Considering the vast application of sea surface temperature in climatic and oceanic investigations, this parameter was studied in Oman Sea from 1986 to 2015. The SST was surveyed using trend analysis and Global and local Moran’s I spatial autocorrelation. In trend analysis, the Mann-Kendall test was used to determine the trend of SST changes and the Sen's Estimator method was used to examine the slope of the changes. Using these methods, it was found that during January, February and December, there was no significant ascending trend in SST values, and only parts of the Strait of Hormuz had a significance descending trend. On the other hand, there was no significant descending trend in March, and the ascending trend in the SST was seen in the southern part of the Oman Sea. Other months of the year had a significant ascending and descending trend in different parts of the Oman Sea, which October had the highest ascending trend. In the annual time scale, it was also found that the southern parts of the Oman Sea had ascending trend in the SST value and Western parts had a descending trend. The occurred changes in the high amounts (positive and negative) were corresponding to the significance ascending and descending trends. The results of Global Moran for the annual time scale indicated an ascending trend of autocorrelation values and cluster patterns of SST data over time, using the local Moran analysis, it was found that warm clusters of SST are increasing in the Oman Sea, and on the other hand, cold clusters of this parameter have been reduced over 30 years. According to the results of trend and spatial autocorrelation analysis, it has been found that SST have been increasing in different parts of the Oman Sea during 30 years, so climate change and global warming may have affected this region.