Mr Ebrahim Bairanvand, Dr Amir Gandomkar, Dr Alireza Abbasi, Dr Morteza Khodaghoi,
Volume 25, Issue 79 (12-2025)
The torrential rains that occurred in April 2017 in Lorestan Province exemplified severe precipitation that inflicted substantial damage on agricultural, urban, transportation, and communication infrastructures. This study aims to investigate and elucidate the relationship between the physical structure of clouds responsible for two waves of heavy rainfall in April 2017 within the Doroud catchment area of Boroujerd. In this context, the statistical characteristics of two precipitation events on March 25 and April 1, 2019, were analyzed. The microphysical properties of the clouds generating these two heavy rainfall events were examined utilizing the Madis superconductor product and MOD06. Four microphysical factors contributing to the formation of clouds during these two rainfall waves in the Doroud-Borujerd basin—including cloud top temperature (CTT), cloud top pressure (CTP), optical cloud thickness (OCT), and cloud cover ratio (CFR)—were analyzed. Statistical assessments indicated that the first wave of heavy rainfall, occurring on March 25, 2019 (5 April 1398), accounted for 15% of the total annual rainfall, while the second wave on April 1, 2019 (12 April 1398) contributed 20% of the region's average annual rainfall within these two days. The findings from the analysis of the microphysical structure of the clouds producing these two precipitation waves, based on data from the MODIS cloud sensor product, revealed a significant spatial correlation between the four microphysical factors and the recorded precipitation values of these two heavy rainfall events. Specifically, the cloud top temperature and pressure, indicative of vertical cloud expansion in the area, exhibited a significant inverse relationship with the precipitation amounts in the basin. Conversely, the cloud cover ratio and optical thickness demonstrated a direct and significant spatial correlation with the recorded rainfall values. The results of this study thus establish a significant and robust relationship between the microphysical structure of clouds and the precipitation amounts recorded in the region during these two heavy rainfall events.