Search published articles


Showing 2 results for Lorestan Province

Hamed Heidari, Darush Yarahmadi, Hamid Mirhashemi,
Volume 24, Issue 75 (12-2024)
Abstract

Human interventions in natural areas as a change in land use have led to a domino effect of anomalies and then environmental hazards. These extensive and cumulative changes in land cover and land use have manifested themselves in the form of anomalies such as the formation of severe runoff, soil erosion, the spread of desertification, and salinization of the soil. The main purpose of this study is to reveal the temperature inductions of the land cover structure of Lorestan province and to analyze the effect of land use changes on the temperature structure of the province. In this regard, the data of land cover classes of MCD12Q2 composite product and ground temperature of MOD11A2 product of MODIS sensor were used. Also, in order to detect the temperature inductions of each land cover during the hot and cold seasons, cross-analysis matrix (CTM) technique was used. The results showed that in general in Lorestan province 5 cover classes including: forest lands, pastures, agricultural lands, constructed lands and barren lands could be detected. The results of cross-matrix analysis showed that in hot and cold seasons, forest cover (IGBP code 5) with a temperature of 48 ° C and urban and residential land cover (IGBP code 13) with a temperature of 16 ° C as the hottest land use, respectively. They count. In addition, it was observed that the thermal inductions of land cover in the warm season are minimized and there is no significant difference between the temperature structure of land cover classes; But in the cold season, the thermal impulses of land cover are more pronounced. The results of analysis of variance test showed that in the cold period of the year, unlike the warm period of the year, different land cover classes; Significantly (Sig = 0.026) has created different thermal impressions in the province. Scheffe's post hoc analysis indicated that this was the difference between rangeland cover classes and billet up cover.
Ms Akram Alinia, Dr Amir Gandomkar, Dr Alireza Abasi,
Volume 24, Issue 75 (12-2024)
Abstract

The main goal of this research is to analyze the time series trend of fire events in natural areas and reveal the relationship between these fire events and vegetation levels in Lorestan province. In this regard, the data of the fire product of the Madis sensor (MOD14A1) and the vegetation product (MOD13A3) of the Madis sensor were used during the statistical period of 2000-2020. The monthly and annual spatial distribution of fires in Lorestan province was investigated. Cross-information matrix analysis and spatial correlation matrix were used to reveal the relationship between fire occurrences and vegetation. The results showed that more than 70% of the total frequency of fire occurrences in natural resources fields (fires with code 2) in Lorestan province is related to June and then July. In terms of the long-term trend, the 21-year trend of the frequency of fire incidents in the province showed that the frequency of incidents in the natural resources areas of the province has generally increased with an annual slope of 3 incidents. The results of the correlation analysis between the monthly vegetation cover and the annual frequency of fire occurrences showed that the fire occurrences in the province showed a significant correlation with the vegetation cover changes in 4 months of the growing period, i.e. from May to August. Cross-matrix analysis between the spatial distribution of fire occurrence foci and NDVI index, both of which were products of MODIS measurement, indicated that, in general, the highest frequency of fire occurrences in Lorestan province in the period from May to August corresponds to Greenness range was 0.15 to 0.22. This range of vegetation generally corresponded to rainfed lands, weak pastures and low-density forest patches

Page 1 from 1     

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb