Dr. Mostafa Kabolizadeh, Dr. Sajad Zareie, Mr. Mohammad Foroughi Rad,
Volume 0, Issue 0 (3-1921)
Abstract
There are various indicators to monitor and management of agricultural water resources in arid and semi-arid countries including Iran, some of which can be extracted directly in situ, and some can be retrieved using remote sensing technology and satellite images. Aim of this study is to propose the most appropriate and efficient indicators of agricultural water resource management for achieving maximum production and maximum water efficiency using remote sensing technology, therefore, Crop Water Stress Index (CWSI) and Surface Energy Balance Algorithm (SEBAL) were used to estimate Evapotranspiration (ET). In the first step, ET rate was calculated using SEBAL algorithm for six Landsat 8 satellite images related to the wheat growth period. Then, zoning of this index was done in the range of zero to one, in four categories of very low, low, medium and high, which respectively indicate the lowest to the highest amount of ET. In next step, CWSI was calculated based on Idso equation, and its results show different changes both in cold season and in warm months. Comparison of ET and CWSI shows a significant relationship between these two indices in warm months, while in cold months, no significant relationship can be seen. These findings along with the established relationship between ET and CWSI can inform water management strategies in arid environments for sustainable crop production. |
|
Taher Safarrad, Mehran Mansourinia, Hersh Entezami,
Volume 19, Issue 53 (6-2019)
Abstract
Population growth and urbanization development are the main triggering factors of changes in urban land uses. These, in turn, result in changes in the components of radiation balance. The present study tries to analyze the role of urban land uses in radiation balance by calculating net radiation and its analysis. For this purpose, the Landsat 8 satellite image of 2016 was used. Characteristics of radiation flux including net radiation flux (RN), ground surface albedo (α), incoming longwave radiation (RL↓), incoming shortwave radiation (RS↓), outgoing longwave radiation (RL↑), and ground surface temperature were computed using Sebal algorithm.The values of these components in different land uses (compressed residential, scattered residential, green area and wastelands) were analyzed using one-way analysis of variance (ANOVA) and Tukey’s test. The results of this study showed that the selected land uses have significant differences in the amount of radiation flux, therefore the wastelands are warmer than the residential areas by about 6 oC and the residential areas are warmer than the green areas by about 1.5 oC. The results also indicated that these differences are due to changes in output energy (α and RL↑), and any change in land use over time will ultimately lead to a change in the radiation balance and the temperature of those places, which this temperature increase, is different from the increase of the temperature due to global warming.
Mehdi Asadi, Khalil Valizadeh Khamran, Mohammad Baaghdeh, Hamed Adab,
Volume 20, Issue 59 (12-2020)
Abstract
Using Landsat satellite images taken in 2015/08/10 and also SEBAL and metric methods, surface albedo amounts for various land uses in the northern half of the Ardabil province was estimated. ENVI4.8 and ArcGIS10.3 softwares were also used. To determine the type of usage of different levels, the maximum likelihood algorithm classification method was used with Kappa coefficient of 86.14% and overall accuracy of 92.63%. The results indicated that the water levels with the mean value of 0.93 and 0.414, respectively, had the least amount of albedo in SEBAL and METRIC methods. Also, based on the results obtained from SEBAL and METRIC methods the city albedo is about 0.313 and 0.278 respectively. These values are the highest levels of albedo among Land use levels. In this study, the amount of albedo in rangelands was determined to be between 0.183 to 0.266 in the SEBAL method and between 0.237 and 0.265 in METRIC method. The amount of albedo was also examined in agricultural (0.240 based on SEBAL method and 0.247 based on METRIC method) and forest lands (0.149 based on SEBAL method and 0.225 based on METRIC method). Finally, according to the results of Albedo values based on SEBAL and METRIC methods, it was concluded that due to the difference in net energy received at different levels, it is possible to estimate the level of albedo levels, which is very effective in estimating evapotranspiration by remote sensing methods.