Search published articles


Showing 2 results for Wrf Model

Ms Mahboobeh Pouratashi, Dr Mohammad Moradi, Dr Ebrahim Fattahi,
Volume 20, Issue 57 (6-2020)
Abstract

This research aims to study the impact of temperature and wind in the southern low-pressure system and its associated precipitation in the southern regions of Iran. As The southern low pressure system moves eastward, it crosses the southern regions of Iran, causing medium and heavy rainfall in these areas. In this study, two southern low-pressure systems that caused heavy rainfall on March 11, 2015 and January 17, 2000 in southern Iran were selected, analyzed and simulated using the numerical Weather Research and Forecasting (WRF) model. Since the wind and temperature fields play a significant role in the southern low-pressure systems, four experiments were performed for investigating the effects of temperature and wind on the intensification and weakening of the southern system. The simulation results showed that the simulation for the increased (decreased) temperature caused the weakened (intensified) the southern low pressure in the studied area. This result showed that the vertical structure of the southern low-pressure and its physical characteristics are similar to the mid-latitudes cyclones, and these systems were different from the thermal low pressures. The results of wind speed changes showed that the increased (decreased) wind speed simulation caused an increase (decrease) in relative vorticity, thus the southern low pressure was intensified (weakened). In both cases, the rainfall was decreased by the increased temperature simulation, and decreased temperature caused an increase in rainfall. It was also seen that the increase in wind speed caused the special humidity advection to be increased and then the rainfall increased. Also the amount of rainfall decreased when conditions did not provide for the advection of specific humidity or the wind speed reduced.

Fahimeh Shakeri, Gholamabbas Fallah Ghalhari, Hashem Akbari, Zahra Hejazizadeh,
Volume 24, Issue 72 (3-2024)
Abstract

In this research, the sensitivity of the meteorological elements (such as mean temperature, relative humidity and wind speed) to different physical parameterizations in the numerical forecast model (WRF) was evaluated to simulate the climate of the city and adjust the Urban Heat Island of the study area.To study urban environmental issues, the Urban Canopy Model (UCM) was coupled to the WRF model. Several experiments were performed to achieve optimal configuration for simulation in the period from 18-21 August 2016 in the stable atmospheric conditions in summer. Selection of the most appropriate configuration with the least error is proposed as an appropriate setting for urban climate simulations and the study of Urban Heat Island (UHI). Increasing surface reflections to reduce UHI in the range was applied. Two indices of Root Mean Square Error (RMSE), and Mean Bias Error (MBE) were used to evaluate the predictive performance of the model and its corresponding observational values. The results showed that in the province of Tehran, in general, all configurations estimate the air temperature and wind speed less than real and relative humidity more than the actual value. In Alborz province, all configurations estimate the air temperature and wind speed more than real and relative humidity less than real value. By increasing the reflection of urban levels, the mean temperature of Tehran and Alborz provinces decreases 0.6 and 0.2 ° C, respectively. Wind speed, especially in urban areas, increases somewhat. We also see an increase in relative humidity (especially in urban areas) in the studied areas.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb