Search published articles


Showing 4 results for Atmospheric Circulation

Atefeh Rezaei Talei, Zahra , Buhlol Alijani, Hematolah Roradeh, Taher Safarrad,
Volume 0, Issue 0 (3-1921)
Abstract

The role of regional and extra-regional forcings causes changes in the Siberian high-pressure cyclonic circulation every year. In this regard, an attempt was made to investigate the variability of the intensity of the Siberian high pressure in relation to the abnormal winter circulation of the atmosphere. For this purpose, gridded data of sea level pressure, geopotential height, orbital and meridional wind components of Center for Environmental Prediction/Atmospheric Sciences (NCEP/NCAR) between the years until 2020 (December to February) were used. After applying the Siberian high pressure intensity index, the extreme periods of this high pressure in winter were extracted. Next, the development of this system and the systems affecting the Siberian high pressure were investigated using the quantity of relative Vorticity advection. The results showed that during the winter period, the high pressure center of Siberia has undergone changes and has taken on a growing trend between 4 and 6 hectopascals. On the other hand, it was observed that the role of atmospheric systems such as dynamic ridges on the Siberian region along with advection The negative relative humidity, the location of the Siberian region in the east of the ridge, and the formation of omega bands play an important role in strengthening this system, which has caused this high pressure to develop from east to west or north to south. On the other hand, the role of the polar vortex in the cold advections of the region and the displacement towards the equator has caused the Siberian high pressure to sometimes increase by more than 11 hectopascals compared to its long-term average. Finally, it was observed that the atmospheric circulation in mid-latitudes plays a transitional role in the high pressure changes in Siberia and the polar and subpolar currents.

Mostafa Karimi, Ghasem Azizi, Aliakbar Shamsipour, Lila Rezaee Mahdi,
Volume 16, Issue 41 (6-2016)
Abstract

In this study is simulation of role of topography in thickness and Inland penetration of sea-breeze in southern coast of the Caspian Sea. The RegCM4 as a regional scale climate model coupled with a lake model and also the reanalysis data of NCEP / NCAR used to determine of the initial conditions of the model. The model was run during the peak of sea breeze on the southern coast of the Caspian Sea (July 2002) in both conditions (with mountains) and (without mountains). the outputs indicated that in without topography condition depth of the sea breeze will increase to the current position the southern slopes of the Alborz Mountains ( latitude ᵒ35 ) but the land breeze in the area is gone. The maximum speed and changes in wind direction observed on the coast southeast and central Alborz respectively. In addition with non-topography conditions, the thickness of sea breeze in different areas significantly has increased with the highest rate on the eastern coast (longitude ᵒ53).


Shadieh Heydari Tasheh Kaboud, Younes Khoshkhoo,
Volume 19, Issue 53 (6-2019)
Abstract

The aim of this research is the study of the climate change impacts on the seasonal and annual reference evapotranspiration time scales in some selected stations located in the West of Iran. To this purpose, four stations including Sanandaj, Saghez, Khorramabad and Kermanshah synoptic stations with enough long-term data were selected and the climate change impact on the reference evapotranspiration of these stations under two RCP2.6 and RCP8.5 scenarios in three future time periods including 2011-2040, 2041-2070 and 2071-2100 in comparison with the 1970-1999 base period was studied. The FAO-Penman-Montieth method was applied to calculating reference evapotranspiration and the CanESM2 general circulation model and SDSM downscaling method were used to simulating future climate conditions under the climatic scenarios. The results showed that the mean reference evapotranspiration in the annual and autumn and winter time scales in comparison to the base period will significantly increase for all of the studied stations under all of the scenarios and periods at the 0.01 confidence level. For spring season, the only significant change of the future period mean reference evapotranspiration compared to the base period in the all of the studied area will be a significant increase at the 0.01 confidence level in the 2071-2100 period under the RCP8.5 scenario and for the summer season, this significant increasing rate will occur in the 2041-2070 and 2071-2100 periods under the RCP8.5 scenario. The overall results of this research showed that the highest increasing rate of the future periods in comparison with the base period for all of the seasonal and annual time periods and for all of the studied area will under RCP8.5 scenario and in the 2071-2100 time periods. by comparing the reference evapotranspiration change rates between the different seasonal and annual scales, the results showed that the increasing rate of the mean reference evapotranspiration at the West of Iran will be very remarkably in the autumn and winter seasons compared to the other time scales.

Sahar Nasiri, Boroumand Salahi, Aliakbar Rasouli, Faramarz Khoshakhlagh,
Volume 22, Issue 66 (9-2022)
Abstract

Atmospheric circulation is important to determine the surface climate and environment, and affect regional climate and surface features. In this study, to quantify its effect, the classification system, developed by Lamb is applied to obtain circulation information for Ardabil, North West Province in Iran, on a daily basis, and is a method to classify synoptic weather for study area. For that purpose, daily mean sea-level pressure (MSLP) for extreme precipitation days from 1971 to 2007 is used to derive six circulation indices and to provide a circulation catalogue with 27 circulation types. The frequency of circulation types over different periods is computed and described. Five circulation types are most recognised in this study: E, SE, A, C and CSE. The catalogue and the associated indices provide a tool to interpret the regional climate and precipitation, and deal with the linkage between the mean extreme regional precipitations in north western of Iran and the large-scale circulation. Five circulation types E, A, SE, C and CSE are associated with high precipitation and rainy seasons (spring and September) but the most precipitation rate is resulted of cyclone family. Low pressure of north latitudes and central area of Iran with low pressure of gang from Pakistan and India.  SE is almost dominant circulation type over the years. The cold season started from august to march is characterized by frequent directional flows, especially E, SE, A, C and CSE whereas in  warm period (Apr–Aug) SE, NE, AE have  smaller role, especially in July, August and September more frequent flows dominated by SE and E. 


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb