Search published articles


Showing 4 results for Subsidence

Dr Fariba Esfandyari, Mr Ehsan Ghale, Ms Maryam Mohamadzadeh Shishegaran,
Volume 0, Issue 0 (3-1921)
Abstract

One of the dangers that has occurred in many areas in recent years is the dangers of subsidence. Iran's geographical location has put many of its regions at risk. High precision radar interferometry technique is one of the most suitable methods for detecting and measuring subsidence. In this study, in order to identify and measure subsidence in Ardabil plain, the Sentinel 1 radar image interference technique of 2015 and 2020 has been used. In order to verify, the data of piezometric wells and land use maps in the area were used. According to the results, the maximum subsidence rate in 5 years in the region is estimated at 17 cm. The results also showed that the highest subsidence rates in the period 2015 to 2020 are in the next categories of rangeland uses with a value of 17 cm, soil value of 14 cm and rainfed agricultural and residential areas with a value of 13 and 12 cm. respectively, 12 cm subsidence for residential use can be due to demolition and construction of large buildings. Also, the relationship between subsidence and changes in groundwater level showed that in a period of 5 years, the groundwater level has decreased by 4 meters. This drop in groundwater level has led to land subsidence in the study area.
Roghayeh Delaram, Samad Fotohi, Mohsen Hamidianpoor, Morteza Salari,
Volume 24, Issue 72 (3-2024)
Abstract

The subsidence phenomenon is considered one of the most frequent hazards occurring worldwide and imposing irreparable damages every year. This phenomenon affects the ground’s surface and its layers and causes the ground deformation. It can be referred to as a morphological phenomenon that is associated with the gradual sinking of the ground and the vertical movement of materials. Among the various methods used to study the land subsidence pattern, the Differential Interferometric Synthetic Aperture Radar (DInSAR) technique has provided more accurate results. Therefore, this technique was used to investigate the subsidence rate in Mashhad plain from 2003 to 2010 and the Envisat ASAR (C-band) and Sentinel-1 ASAR (C-band) satellite images were employed during the year 2019. The results show that the highest subsidence rate of about 44 cm occurred in Qasem Abad and Kalateh-ye Barfi lands from 2008 to 2010. A subsidence rate of about 37 cm was also observed in the same area from 2007 to 2009. The interpolation results using piezometer well statistics show a decrease in groundwater levels in this area and confirm the accuracy of the results.

Mr Shokrollah Kiani, Mr Ahmad Mazidi, Mr Seyed Zein Al-Abedin Hosseini,
Volume 24, Issue 74 (9-2024)
Abstract

Subsidence is an environmental phenomenon caused by the gradual subsidence or sudden subsidence of the earthchr('39')s surface. The phenomenon of subsidence in residential, industrial and agricultural areas can cause catastrophic damage. In most parts of Iran, there is a high correlation between land subsidence and the decrease of groundwater level and consequently the density of soil layers. In this study, using two time series of radar images with artificial apertures from Sentinel sensors belonging to 2014 and 2019, the amount of subsidence in Damaneh plain (Frieden city) was calculated. Wells were studied in the period 2014 to 2019, the results of the study of the correlation between land subsidence with changes in groundwater level at the level of 95% was significant. In the continuation of the research, using the logistic regression model, the subsidence trend in the study area was predicted and a subsidence probability map was prepared and created as a dependent variable for the logistic regression model. The independent variables used included altitude, slope, slope direction, geology, distance from the road, distance from the river, land use, distance from the village, groundwater level, piezometric wells. The output of the model is subsidence risk zoning map which was created in five classes. The accuracy and validation of the logistic regression model was evaluated using the system performance characteristic curve and the accuracy (0.89) was obtained. The good accuracy of the logistic regression model in producing the probability map Subsidence is in the study area. In the output of the model, it was found that the area of ​​1980 hectares, equivalent to 7.9%, has a very severe subsidence that has put the situation in a dangerous situation and the need for control and management to reduce this destructive effect.
Mohammadreza Goodarzi, Maryam Sabaghzadeh, Amirreza Rajabpour Niknam,
Volume 25, Issue 76 (3-2025)
Abstract

In arid and semi-arid regions, groundwater is more important for humans and ecosystems than surface water. Land subsidence is caused by the pumping and uncontrolled use of groundwater in an area. When the extracted quantities are not replenished by rainfall, it leads to damages such as road failures, destruction of residential areas, railways, as well as water and gas pipelines. The Yazd-Ardakan plain is one of the main plains in Yazd province, hosting 75% of the province's population density and most industrial centers. Additionally, this plain has been subjected to a ban by the Ministry of Energy due to a sharp decline in groundwater levels. This study aimed to quantify and compare the extent of subsidence using four Synthetic Aperture Radar (SAR) images of the C-band from the Sentinel-1 satellite and the radar differential interferometry method from 2017 to 2021. The maximum subsidence recorded in 2017 was 13 cm, while in 2020 and 2021, it decreased to 9 cm, primarily concentrated in the Shamsi region between Meybod and Ardakan. Furthermore, to validate the satellite-derived results, they were compared with those obtained through accurate leveling methods conducted by the Iran National Cartographic Center. The study revealed that Sentinel images exhibit a strong capability to estimate the extent of subsidence. Considering the examination of groundwater consumption and depletion statistics in recent years, potential reasons for the reduction in subsidence in the study area could be attributed to management measures such as water transfer to this basin, alterations in agricultural practices, and a decrease in groundwater depletion compared to previous years in this region.


Page 1 from 1     

© 2024 CC BY-NC 4.0 | Applied researches in Geographical Sciences

Designed & Developed by : Yektaweb