XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Halabian A H, hossienalipour jazi F. Synoptic Analysis of Climatic Hazards in Southwestern Iran (Case study: flood generating heavy precipitation of Azar 1391). Journal of Spatial Analysis Environmental Hazards 2016; 2 (4) :31-46
URL: http://jsaeh.khu.ac.ir/article-1-2530-en.html
1- , halabian_a@yahoo.com
Abstract:   (10775 Views)

We can identify the flood not only considering circulation pattern in occurring day but also by studying circulation pattern a few days before fresh event. This subject has mutual approach. In one hand, it indicates  that circulation patterns which were before flood event have important role in determining the conditions and moisture content of studied area and playing the fundamental role in few coefficient of region because it determines the previous moisture. On the other hand, it indicates that we should tracking the rain-genesis synoptic systems from source to end place of their activity for studying floods and their meteorology factors which have created them. By this way, we can acquire more comprehensive recognition about the relationship between circulation pattern and floods. In the other words, the identification of synoptic patterns that have created the flood reveals not only the mechanism of their emergence but also is useful for prognosis and encountering with them. The extensive researches have been accomplished about Inundation in the world and Iran, but Iran haven’t much antiquity about synoptic researches. For foreign researches, we can name researchers such as Hireschboeck (1987), Kutiel et al(1996), Komusce and et al (1998), Krichak  and et al (2000), Rohli and et al (2001), Kahana (2002), Teruyuki Kato(2004), Ziv and et al (2005), Carlalima and et al (2009). The numerous researchers have studied the Inundation climatology in internal of country such as Bagheri (1373), Ghayour (1373), Kaviani and Hojatizadeh (1380), Moradi (1380), moradi (1383), Mofidy (1383), Masoodian (1384), Masoodian (1384), Hejazizadeh et al(1386), Parandeh Khozani and Lashkari (1389). In this research, we considered the heavy precipitation of Azar 1391 in southwestern of Iran that resulted in flood phenomenon in the cause and effect manner so that can do necessary prevention actions before occurring the flood for preventing the probable damages and optimal use of precipitations by forecasting the patterns that have created the flood.

In this synoptic study, we need to two database: one group is variables and atmospheric data consisting of geopotential height of 500 hpa level (in meter geopotential), zonal wind and meridional wind (in m/s) and special humidity (in gr/kg) during this times 00:00, 06:00, 12:00 and 18:00 Greenwich in 0-80° northern and 0-120° eastern with local resolution of 2.5*2.5 Arc that have been borrowed from database of (NCEP/NCAR) dependent to National Atmosphere and Oceanography Institute of USA, and other group is daily precipitation data of region rain gauge stations during 4-8th Azar of 1391 (24th November – 28th November 2012). In continuation. By applying the environment- circulation approach, we took action to drawing circulation pattern maps of 500 hpa level, thickness of atmosphere patterns of 500-1000 hpa and moisture flux convergence function from 4-8th Azar of 1391 (that for calendar, conform with 48 hours before beginning the showery precipitation until ending the storm activity) by using data which obtained from database of NCEP/NCAR and the synoptic conditions of above flood have been studied and interpreted in the region.

Flood is one of the most destructive natural hazards that have imposed and impose many damages to people during the history. Hence, the final aim of this research is to explain the key interactions between atmosphere and surface environment and in other words exploration of the relationship between circulation patterns leading to the flood generating precipitation in the southwestern of Iran for forecasting the time and intensity of showers occurrence that lead to flood. For this purpose, by applying environmental-circulation approach, the circulation patterns identified and studied which resulted in flood generating precipitation. The result of this research indicated that torrential precipitations in the region have formed the deep trough in days 4-8 of Azar on the east of Mediterranean and the studied region placed in the east half of this trough that is the location of atmosphere instability. At same time, thickness patterns, indicate the flux of cold air from northern Europe to lower latitudes and spreading the warm air of north of Africa to latitude 50° northern. As a result we expected the frontal discontinuity in the encountering place of these two air mass. Analysis of the moisture flux convergence patterns also indicated that torrential precipitations were the result of moisture flux from Mediterranean and Persian Gulf; and Red Sea and Arab Sea taken into account as reinforced sources.

Full-Text [PDF 1255 kb]   (3157 Downloads)    
Type of Study: Research | Subject: Special
Received: 2016/10/6 | Accepted: 2016/10/6 | Published: 2016/10/6

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb