XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

hashemi M, ghanavati E, ahmadabadi A, torabi O, mozafari A. Assessment and Earthquake Risk Analysis on Tehran Water Supply Network. Journal of Spatial Analysis Environmental Hazards 2023; 10 (2) :59-76
URL: http://jsaeh.khu.ac.ir/article-1-3416-en.html
1- Ph.D Student of Geomorphology, Department of Natural Geography, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran.
2- Associate Professor of Geomorphology, Department of Natural Geography, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran , ghanavati@khu.ac.ir
3- Associate Professor of Geomorphology, Department of Natural Geography, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran
4- PhD in Water Management, Mahsab Sharq Consulting Engineers, Tehran, Iran.
5- MA of Civil Engineering, Tehran Province Water and Wastewater Company, Tehran, Iran.
Abstract:   (2196 Views)
Introduction
Earthquakes as one of the most important natural disasters on earth, have always caused irreparable damage to human settlements in a short period of time. Severe earthquakes have led to the idea of developing an infrastructure plan to reduce the risks and damages caused by it. The urban water supply system is the most important critical infrastructure that is usually damaged by natural disasters, particularly earthquakes and floods; hence, the function of the pipelines of the water system determines the degree of resilience and design of the infrastructure against multiple natural and man-made hazards. Considering the inability to prevent earthquakes and the inability of experts to accurately predict the time it is necessary to know the status of earthquake-structure and seismicity in Tehran to determine the amount of earthquake risk in order to make the necessary planning for structural reinforcement. Theoretical and field studies of tectonic seismicity in the Tehran area show that this city is located on an earthquake-prone area around the active and important faults of Masha, north of Tehran, Rey and Kahrizak. The occurrence of 20 relatively severe earthquakes illustrates this claim. Regarding the location of faults in Tehran city, it is necessary to assess the vulnerability of Tehran water facilities.
Research Methodology
The present study is a practical-analytic one. Considering the severity of earthquake damages, it is necessary to conduct earthquake hazard zonation studies in different urban areas and to determine important indicators of damage assessment such as maximum ground acceleration, maximum ground speed, maximum ground displacement. Three indices were considered for mapping earthquake seismic zones and their integration into the GIS presented a seismic hazard map. In the analysis of earthquake risk, it is necessary to evaluate two indicators of risk and vulnerability. To prepare the general hazard power mapping the weights obtained from the ANP model were applied to the existing raster layers via the Raster Calculator command. In this way, the standardized layers are multiplied separately by their respective weights and finally overlapped. In order to evaluate the vulnerability, a series of evaluation indices are introduced and ANP techniques are used. The relative value of each index is then calculated using the multivariate approach using the SAW technique. In order to calculate the earthquake risk based on R = H * V relation, the values ​​of these two components were multiplied. This calculation was performed in GIS software on the risk and vulnerability raster layer and the final result of this calculation was displayed on the map.
Description and interpretation of results
In this study, we tried to estimate the relative risk and risk of seismic hazard on the water supply lines in Tehran, using available data and scientific methods, and map the risk level. These lines should be prepared first by the amount of earthquake hazard risk and then by the risk map, to estimate the earthquake risk on the water supply network. first the earthquake risk then the status of the hazard lines should be calculated. The vulnerability of the water supply lines was calculated using the ANP model by multiplying the total potential hazard risk then substrate transfer network vulnerability risk map obtained transmission network. The highest risk was in the west and north of Tehran. The maps showed the risk potential and the vulnerability of the lines. These areas had high seismic potential and the density of the lines was higher in these areas. Water transmission facilities are at risk and earthquake hazards may be affected by damage to the transmission lines, drinking water to a large population will be difficult, as well as performing necessary zoning to prevent future expansion of the facility in place. These analyzes are a prelude to applying corrective techniques to pipelines to reduce their vulnerability and prevent newly created pipelines from locating in vulnerable areas. Since the results of this study are risk maps along the route of the water supply lines, so in order to prepare a risk control program, we can identify the high risk pipeline map and identify the pipeline vulnerability. And, depending on its location, provided an appropriate prevention and control plan for the conditions surrounding the pipeline environment.
Full-Text [PDF 949 kb]   (708 Downloads)    
Type of Study: Research | Subject: Special
Received: 2023/12/27 | Accepted: 2023/09/1 | Published: 2023/09/1

References
1. حسن زاده ، رمضان علی و مسعود مهربان .1389. بررسی عوامل آسیب در لوله ها ، اتصالات و تاسیسات شبکه آبرسانی در برابر زلزله. نشریه بین المللی مهندسی آب ، 36 : 22-30
2. زبردست، اسفندیار.1389. کاربرد فرایند تحلیل شبکه ای در برنامه ریزی شهری و منطقه ای. نشریه ی هنر های زیبا- معماری و شهرسازی ،41 : 79-90
3. رهنما، رضا؛ رضا راستی ، نعمت حسنی و مصطفی قیاسوند .1394. بررسی آسیب پذیری لرزه ای شبکه آبرسانی منطقه 11 تهران جهت مقاوم سازی. فصلنامه دانش پیشگیری و مدیریت بحران، 4 : 308- 314
4. سلامت ، احمد ؛ مهدی اعلمی، نبی اله غلامی بیدخانی و اسلام ستارزاده .1396.ارزیابی آسیب پذیری لرزه ای شبکه توزیع آب با استفاده از GIS ، چهارمین کنفرانس ملی کاربرد سامانه اطلاعات مکانی GIS در صنعت آب و برق ، اراک ، وزارت نیرو
5. شفائی، پیمان .1394. تحلیل GIS پایه مخاطرات طبیعی تهدید کننده خطوط اصلی انتقال آب شرب شهر ارومیه .پایان نامه کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی. پردیس بین المللی ارس ، دانشگاه تبریز
6. کامل ، بتول.1390. مدیریت بحران زلزله در مرحله قبل از وقوع با استفاده از gis ، مطالعه موردی : منطقه 1 شهرداری تبریز. پایان نامه کارشناسی ارشد رشته سنجش از دور و GIS گروه جغرافیای طبیعی .دانشکده علوم انسانی و اجتماعی دانشگاه تبریز.
7. قنواتی، عزت ا... و مسعود شیخی .1389. نقش برنامه ریزی شهری در کاهش خطر زلزله در بافت های فرسوده مطالعه موردی : منطقه 12 تهران . فصل نامه جغرافیای طبیعی ، سال سوم ،9 : 29-42
8. قهرودی تالی ، منیژه ؛ محمدرضا ثروتی، محمد صرافی، سید محمد پورموسوی و خه بات درفشی .1391. ارزیابی آسیب پذیری ناشی از سیلاب در شهر تهران. فصلنامه علمی امداد و نجات، 3: 79-93
9. علوی،سید محسن؛محمد مسعود و اسدالله کریمی .1397.ارزیابی تاب آوری زیر ساخت های شبکه آب شهری در برابر زلزله (مطالعه موردی : منطقه 2 تهران ). پژوهش های جغرافیای انسانی ، 4 :991-977
10. مستانه، زهرا؛ لطف الله موصلی، مریم جهانگیری،مریم دوست و علی عشقی.1390. توانمندیها و محدودیتهای مدیریت بحران در بیمارستانهای دانشگاه علوم پزشکی هرمزگان. مجله دانشگاه علوم پزشکی فسا، 4: 244-250
11. مقیمی، ابراهیم.1393. چرا دانش مخاطرات ؟(تعریف و ضرورت ) . دانش مخاطرات ، 1 :3-1
12. ناطق الهی ، فریبرز.1379. مدیریت بحران زلزله ابر شهر ها با رویکرد به برنامه مدیریت بحران زلزله شهر تهران. تهران پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله
13. نوری ، الهه .1396. مدل سازی شرایط بحران شبکه آب شرب در مواقع زلزله بر مبنای GIS مطالعه موردی : شهرک باغمیشه تبریز .پایان نامه کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی .دانشکده ی برنامه ریزی و علوم محیطی، دانشگاه تبریز
14. نوروزی خطیری ، خدیجه؛ بابک امیدوار ، بهرام ملک محمدی و سجاد گنجه ای. 1392. تحلیل ریسک مخاطرات چندگانه شهری در اثر سیل و زلزله (مطالعه موردی :منطقه بیست تهران ). جغرافیا و مخاطرات محیطی ،7 : 53 -68.
15. حسنی، نعمت.1390. آسیب پذیری لرزه ای و راهکارهای مقابله با زلزله در سامانه های آبرسانی .فصلنامه علمی تخصصی دانش پیشگیری و مدیریت بحران ، 1 : 39تا 63
16. هاف ، سوزان الیزابت ؛ راجر جی بیلهام.2006. زلزله ، پس از آنکه زمین می لرزد ، مهدی زارع و فرناز کامران زاد . اول .انتشارات مازیار.
17. Bentes, I., Afonso, L., Varum, H., Pinto, J., Varajão, J., Duarte, A. and Agarwal, J., 2011. A new tool to assess water pipe networks vulnerability and robustness. Engineering Failure Analysis, 18(7): 1637-1644.
18. Berberian, M. and Yeats, R.S. 2017. Tehran: An earthquake time bomb. Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberian’s Forty-Five Years of Research Contributions, 525: 87.
19. Campbell, K. W. (2003). Strong-motion attentuation relations. INTERNATIONAL GEOPHYSICS SERIES, 81(B): 1003-1012.
20. Campbell, K.W. and Bozorgnia, Y., 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24: 139-171.
21. Chen, Y., Niu, Z., Bai, J. and Wang, Y., 2014. Seismic vulnerability assessment of water supply network in Tianjin, China. Frontiers of Environmental Science & Engineering, 8: 767-775.
22. Chang, S.E., McDaniels, T., Fox, J., Dhariwal, R. and Longstaff, H. 2014. Toward disaster‐resilient cities: Characterizing resilience of infrastructure systems with expert judgments. Risk analysis, 34:416-434.
23. Dikmen, I and M.T. Birgonul .2007. Using Analytic Network Process forPerformance Measurement in Construction, College of Architecture. Georgia Institute of Technology, USA
24. Fragiadakis, M., Xanthos, S., Eliades, D.G., Gagatsis, A. and Christodoulou, S.E., 2014, October. Graph-based hydraulic vulnerability assessment of water distribution networks. In International Conference on Critical Information Infrastructures Security Springer, Cham: 81-87
25. Javanbarg, M.B., Scawthorn, C., Kiyono, J. and Ono, Y., 2009. Multi-hazard reliability analysis of lifeline networks. In TCLEE 2009: Lifeline Earthquake Engineering in a Multihazard Environment,1: 1-8
26. JICA, C. 2000. The study on seismic microzoning of the Greater Tehran Area in the Islamic Republic of Iran. Pacific Consultants International Report, OYO Cooperation, Japan, pp.291-390.
27. Laucelli, D.B. and Giustolisi, O., 2014. Vulnerability assessment of water distribution networks under seismic actions. Journal of Water Resources Planning and Management, 141: 1-13.
28. Mitchell, D. and Garibay, A. 2011. Assessing and responding to land tenure issues in disaster risk management. Food and Agriculture Organisation of the United Nations (FAO).
29. O'Rourke, T.D., Jezerski, J.M., Olson, N.A., Bonneau, A.L., Palmer, M.C., Stewart, H.E., O'rourke, M.J. and Abdoun, T. 2008. Geotechnics of pipeline system response to earthquakes. In Geotechnical earthquake engineering and soil dynamics,5: 1-38
30. Tanaka, Y. 2012. Disaster policy and education changes over 15 years in Japan. Journal of Comparative Policy Analysis: Research and Practice, 14(3): 245-253.
31. Toprak, S. and Taskin, F. 2007. Estimation of earthquake damage to buried pipelines caused by ground shaking. Natural hazards, 40(1): 1-24.
32. Xing, L. 2008. An efficient binary-decision-diagram-based approach for network reliability and sensitivity analysis. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(1): 105-115.
33. Muhlbauer, W.K. 2004. Pipeline risk management manual: ideas, techniques, and resources. Elsevier.
34. Yüksel, İ. and Dagdeviren, M. 2007. Using the analytic network process (ANP) in a SWOT analysis–A case study for a textile firm. Information sciences, 177: 3364-3382.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Spatial Analysis Environmental hazarts

Designed & Developed by : Yektaweb