1- Kharazmi University , nasserzadeh@khu.ac.ir
2- Kharazmi University
Abstract: (76 Views)
This study investigates the spatio-temporal dynamics of evapotranspiration (ET) and its modulation by biophysical variables and land use/land cover (LULC) changes in the Karun River Basin, southwestern Iran, from 2000 to 2023. The basin, spanning 67,257 km² and characterized by diverse topography, experiences significant annual water loss (72% of 413 billion m³ national precipitation) due to ET, leading to salt and sediment accumulation. Data from MODIS products (MCD12Q1, MOD13A1, MCD43A3, MOD11A2, MOD16A3, CHIRPS) provided land cover, NDVI, albedo, LST, precipitation, and ET at 500-meter resolution, supplemented by Landsat imagery (30-meter resolution) for validation. Multiple regression and Geographically Weighted Regression (GWR) analyses revealed a 39.5% ET increase (31.48 to 43.92 mm/year), a 32.78% NDVI rise (0.18 to 0.239), and a 16.35% LST decrease (33.52°C to 28.05°C), correlated with a 6.90% agricultural decline (6,939,225 to 6,460,335 ha), a 6.94% rangeland increase (3,840,375 to 4,106,780 ha), and a 42.76% forest expansion (156,000 to 222,700 ha). GWR (AdjR² > 0.97, peak 0.9887 in 2010) identified spatial non-stationarity, with overprediction in mountainous northeast regions and underprediction in agricultural southwest plains, reflecting LULC influences. Landsat-derived false color composites and classifications (overall accuracy 85–90%, Kappa 0.85–0.90) validated a 2,477 km² forest loss to high-ET rangelands/agriculture, driving warm-season ET elevation. Results emphasize the need for integrated hydrological models incorporating irrigation data and high-resolution analyses to enhance sustainable water management in this water-stressed region.
Type of Study:
Research |
Subject:
Special Received: 2025/05/12 | Accepted: 2025/10/5