1. Casolino, E., Cortis, C., Lupo, C., Chiodo, S., Minganti, C., Capranica, L. (2012). Physiological versus psychological evaluation in taekwondo elite athletes. International Journal of Sports Physiology and Performance. 7(4): 322-31.
2. Yavuz, H., Turnagol, H., Demirel, A. (2014). Pre-exercise arginine supplementation increases time to exhaustion in elite male wrestlers. Biology of Sport. 31(3): 187-91.
3. Lacerda, A., Marubayashi, U., Balthazar, C., Coimbra, C. (2012). Energy demands in taekwondo athletes during combat simulation. European Journal of Applied Physiology. 112(4): 1221-8.
4. Bridge, C., Ferreira, J., Chaabène, H., Pieter, W., Franchini, E. (2014). Physical and physiological profiles of taekwondo athletes. Sports Medicine. 44(6): 713-33.
5. Kubo, Y., Nishida, Y. (2013). Relationships of pulmonary oxygen uptake kinetics with skeletal muscle fatigue resistance and peak oxygen uptake in healthy young adults. Journal of Physical Therapy Science. 25(11): 1363-6.
6. Buchheit, M., Hader, K., Mendez, A. (2012). Tolerance to high-intensity intermittent running exercise: do oxygen uptake kinetics really matter?. Frontiers in Physiology. 3(1): 406-14.
7. Hetzler, R., Knowlton, R. (1990). Effect of paraxanthine on FFA mobilization after intravenous caffeine administration in humans. Journal of Applied Physiology. 68(1): 44-7.
8. Armstrong, N. (2007). Paediatric Exercise Physiology. Churchill Livingstone, UK, 233.
9. Zanconato, S., Cooper, D., Arnon, Y. (1991). Oxygen cost and oxygen uptake dynamics and recovery with 1 minute of exercise in children and adults. Journal of Applied Physiology. 71(1): 992-9.
10. Pons, G., Lenssen, A., Leffers, P., Kingma, H., Lodder, J. (2013). Taekwondo training improves balance in volunteers over 40. Frontiers in Aging Neuroscience. 5(1):10-16.
11. Hong, S. (1997). Research in physiologic biochemistry characteristics of korean excellent Taekwondo athletes. Beijing: Sports University College News. 20 (1), 22-7.
12. Markovi, G., Miigoj, M. (2005). Fitness profile of elite Croatian female taekwondo athletes. Collegium Antropologicum. 29 (1): 93-9.
13. Wu, G. (2009). Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 37(1): 153-68.
14. Bailey, S. (2010). Dietary nitrate supplementation enhances muscle contractile efficiency during knee-extensor exercise in humans. Journal of Applied Physiology. 109(1): 135-48.
15. Bailey, S. (2009). Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. Journal of Applied Physiology. 107(4):1144-55.
16. Jones, A., Wilkerson, D., Koppo, K., Wilmshurst, S., Campbell, I. (2003). Inhibition of nitric oxide synthase by L-NAME speeds phase II pulmonary vO2 kinetics in the transition to moderate-intensity exercise in man. Journal of Physiology. 552(1): 265-72.
17. Koppo, K., Taes, YE., Pottier, A., Boone, J., Bouckaert, J., Derave, W. (2009). Dietary arginine supplementation speeds pulmonary VO2 kinetics during cycle exercises. Medicine & Science in Sports & Exercise. 41: 1626–32.
18. Bailey, S. (2010). Acute l-arginine supplementation reduces the O2 cost of moderate-intensity exercise and enhances high-intensity exercise tolerance. Journal of Applied Physiology. 109(5):1394-403.
19. Maxwell, A., Ho, H., Le, C., Lin, P., Bernstein, D., Cooke, J. (2001). L-arginine enhances aerobic exercise capacity in association with augmented nitric oxide production. Journal of Applied Physiology. 90(3): 933-8.
20. Burnley, M., Jones, A. (2007). Oxygen uptake kinetics as a determinant of sports performance. European Journal of Scientific Research. 7(2): 63-79.
21. Schaefer, A. (2002). L-arginine reduces exercise-induced increase in plasma lactate and ammonia. International Journal of Sports Medicine. 23(6): 403-7.
22. Bescós, R. (2009). Effects of dietary L-arginine intake on cardiorespiratory and metabolic adaptation in athletes. International journal of sport nutrition and exercise metabolism. 19(4): 355-65.
23. Colombani, P. (1999). Chronic arginine aspartate supplementation in runners reduces total plasma amino acid level at rest and during a marathon run. European Journal of Nutrition. 38(6): 263-70.
24. Lacerda, A., Marubayashi, U., Balthazar, C., Coimbra, C. (2006). Evidence that brain nitric oxide inhibition increases metabolic cost of exercise, reducing running performance in rats. Neuroscience Letters. 393(2): 260-3.
25. Vanhatalo, A., Jones, A., Blackwell, J., Winyard, P., Fulford, J. (2014). Dietary nitrate accelerates postexercise muscle metabolic recovery and O2 delivery in hypoxia. Journal of Applied Physiology. 117(12): 1460-70.
26. Kelly, J. (2013). Effects of short-term dietary nitrate supplementation on blood pressure, O2 uptake kinetics, and muscle and cognitive function in older adults. American Journal of Physiology. 304(2): 73-83.
27. Clerc, P., Rigoulet, M., Leverve, X., Fontaine, E. (2007). Nitric oxide increases oxidative phosphorylation efficiency. Journal of Bioenergetics and Biomembranes. 39(2): 158-66.
28. Camic, C.L. (2010). The effects of 4 weeks of an arginine-based supplement on the gas exchange threshold and peak oxygen uptake. Applied Physiology, Nutrition and Metabolism. 35(3): 286-93.
29. Larsen, F., Weitzberg, E., Lundberg, J., Ekblom, B. (2007). Effects of dietary nitrate on oxygen cost during exercise. Acta Physiologica. 191(1): 59-66.