1. Aikawa, S., Kobayashi, M.J., Satake, A., Shimizu, K.K. and Kudoh, H.J. 2010. Robust control of the seasonal expression of the Arabidopsis FLC gene in a fluctuating environment. ‒ Proc. Natl. Acad. Sci. 107: 11632-11637. [
DOI:10.1073/pnas.0914293107]
2. Burko, Y., Shleizer-Burko S., Yanai, O., Shwartz, I., Zelnik, I.D., Jacob-Hirsch, J., Kela, I., Eshed-Williams, L. and Ori, N. 2013. A role for APETALA1/FRUITFULL transcription factors in tomato leaf development. ‒ Pl. Cell. 25: 2070-2083. [
DOI:10.1105/tpc.113.113035]
3. Dieffenbach, C., Lowe, T. and Dveksler, G. 1993. General concepts for PCR primer design. ‒ PCR Methods Appl. 3: S30-S37. [
DOI:10.1101/gr.3.3.S30]
4. Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M., Kater, M., and Colombo, L. 2003. MADS-box protein complexes control carpel and ovule development in Arabidopsis. ‒ Pl. Cell. 15: 2603-2611. [
DOI:10.1105/tpc.015123]
5. Grandi, V., Gregis, V. and Kater, M.M. 2012. Uncovering genetic and molecular interactions among floral meristem identity genes in Arabidopsis thaliana. ‒ Plant J. 69: 881-893. [
DOI:10.1111/j.1365-313X.2011.04840.x]
6. Guo, H., Yang, H., Mockler, T.C. and Lin, C. 1998. Regulation of flowering time by Arabidopsis photoreceptors. ‒ Science. 279: 1360-1363. [
DOI:10.1126/science.279.5355.1360]
7. Honma, T. and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. ‒ Nature 409: 525-529. [
DOI:10.1038/35054083]
8. Irish, V.F. and Sussex, I.M. 1990. Function of the apetala-1 gene during Arabidopsis floral development. ‒ Pl. Cell. 2: 741-753. [
DOI:10.1105/tpc.2.8.741]
9. Jack, T. 2004. Molecular and genetic mechanisms of floral control. ‒ Pl. Cell. 16: S1-S17. [
DOI:10.1105/tpc.017038]
10. Jack, T., Brockman, L.L. and Meyerowitz, E.M. 1992. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. ‒ Cell 68: 683-697. [
DOI:10.1016/0092-8674(92)90144-2]
11. Kasabe, P.J., Patil, P.N., Kamble, D.D. and Dandge, P.B. 2012. Nutritional, elemental analysis and antioxidant activity of garden cress (Lepidium sativum L.) seeds. ‒ Int. J. Pharm. Pharm. Sci. 4: 392-395.
12. Kong, D., Shen, X., Guo, B., Dong, J., Li, Y. and Liu, Y. 2015. Cloning and expression of an APETALA1-like gene from Nelumbo nucifera. ‒ Genet. Molec. Res. 14: 6819. [
DOI:10.4238/2015.June.18.24]
13. Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S. and Yanofsky, M.F. 1999. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. ‒ Pl. Cell. 11: 1007-1018. [
DOI:10.1105/tpc.11.6.1007]
14. Liu, C., Xi, W., Shen, L., Tan, C. and Yu, H. 2009. Regulation of floral patterning by flowering time genes. ‒ Dev. Cell. 16: 711-722. [
DOI:10.1016/j.devcel.2009.03.011]
15. Lü, J., Wu, Y., Sun, L. and Zhang, Q. 2007. Genetic transformation of Chrysanthemum morifolium cv.'Yu Ren Mian'with AP1 gene mediated by Agrobacterium tumefaciens. ‒ Sci. Silvae Sin. 43: 128-132.
16. Mandel, M.A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M.F.J.N. 1992 Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. ‒ Nature 360: 273-277. [
DOI:10.1038/360273a0]
17. Mandel, M.A., and Yanofsky, M.F. 1995. A gene triggering flower formation in Arabidopsis. ‒ Nature 377: 522-524. [
DOI:10.1038/377522a0]
18. Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C.J., Lu, S., Chitsaz, F., Derbyshire, M.K., Geer, R.C. and N.R. Gonzales. 2016. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. ‒ Nucl. Acids Res. 45: D200-D203. [
DOI:10.1093/nar/gkw1129]
19. Melzer, R., Wang, Y. and Theißen, G. 2010. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. ‒ Semin. Cell Dev. Biol. 21: 118-128. [
DOI:10.1016/j.semcdb.2009.11.015]
20. Menzel, G., Apel, K. and Melzer, S. 1995. Isolation and analysis of SaMADS C, the APETALA 1 cDNA homolog from mustard. ‒ Pl. Physiol. 108: 853. [
DOI:10.1104/pp.108.2.853]
21. Mibus, H., Heckl, D. and Serek, M. 2011. Cloning and characterization of three APETALA1/FRUITFULL-like genes in different flower types of Rosa× hybrida L. ‒ J. Pl. Growth Regulat. 30: 272-285. [
DOI:10.1007/s00344-010-9190-8]
22. Ng, M. and Yanofsky, M.F. 2001. Activation of the Arabidopsis B class homeotic genes by APETALA1. ‒ Pl. Cell. 13: 739-753. [
DOI:10.1105/tpc.13.4.739]
23. Ó'Maoiléidigh, D.S., Graciet, E. and Wellmer, F. 2014. Gene networks controlling Arabidopsis thaliana flower development. ‒ New Phytol. 201: 16-30. [
DOI:10.1111/nph.12444]
24. Pabón-Mora, N., Ambrose, B.A. and Litt, A. 2012. Poppy APETALA1/FRUITFULL orthologs control flowering time, branching, perianth identity, and fruit development. ‒ Pl. Physiol. 158: 1685-1704. [
DOI:10.1104/pp.111.192104]
25. Pelaz, S., Gustafson‐Brown, C., Kohalmi, S.E., Crosby, W.L. and Yanofsky, M.F. 2001. APETALA1 and SEPALLATA3 interact to promote flower development. ‒ Plant J. 26: 385-394. [
DOI:10.1046/j.1365-313X.2001.2641042.x]
26. Pe-a, L., Martín-Trillo, M., Juárez, J., Pina, J.A., Navarro, L. and Martínez-Zapater, J.M. 2001. Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. ‒ Nat. Biotechnol. 19: 263-267. [
DOI:10.1038/85719]
27. Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. ‒ Proc. Natl. Acad. Sci. 93: 4793-4798. [
DOI:10.1073/pnas.93.10.4793]
28. Sambrook, J., Russell, D.W. and Russell, D.W. 2001. Molecular cloning: a laboratory manual (3-volume set). ‒ Cold spring harbor laboratory press, New York, 2: 300
29. Sessions, A., Yanofsky, M.F. and Weigel, D. 2000. Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. ‒ Science 289: 779-781. [
DOI:10.1126/science.289.5480.779]
30. Shore, P. and Sharrocks, A.D. 1995. The MADS‐box family of transcription factors. ‒ Eur. J. Biochem. 229: 1-13. [
DOI:10.1111/j.1432-1033.1995.tb20430.x]
31. Shukla, A., Singh, C.S. and Bigoniya, P. 2011. Phytochemical and CNS activity of Lepidium sativum Linn seeds total alkaloid. ‒ Der Pharmacia Lett. 3: 226-237.
32. Suárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F. and Coupland, G. 2001. CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. ‒ Nature. 410: 1116-1120. [
DOI:10.1038/35074138]
33. Tang, M., Tao, Y.B. and Xu, Z.F. 2016. Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha. ‒ Peer J. 4: e1969. [
DOI:10.7717/peerj.1969]
34. Theissen, G. and Saedler, H. 2001. Plant biology: floral quartets. ‒ Nature. 409: 469-471. [
DOI:10.1038/35054172]
35. Theologis, A., Ecker, J.R., Palm, C.J., Federspiel, N.A., Kaul, S., White, O., Alonso, J., Altafi, H., Araujo, R. and Bowman, C.L. 2000. Sequence and analysis of chromosome 1 of the plant Arabidopsis thaliana. ‒ Nature 408: 816-820. [
DOI:10.1038/35048500]
36. Wellmer, F. and Riechmann, J.L. 2010. Gene networks controlling the initiation of flower development. ‒ Trends Genet. 26: 519-527. [
DOI:10.1016/j.tig.2010.09.001]
37. Xu, Z., Ali, Z., Yi, J., He, X., Zhang, D., Yu, G., Khan, A., Khan, I. and Ma, H. 2011. Expressed sequence tag-simple sequence repeat-based molecular variance in two Salicornia (Amaranthaceae) populations. ‒ Genet. Molec. Res. 10: 1262-1276. [
DOI:10.4238/vol10-2gmr1321]