Volume 5, Issue 4 (12-2018)                   nbr 2018, 5(4): 365-371 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahmoodi R, zanganehnejad Z, Setorki M. Protective effect of Biarum carduchrum extract on depression and pain in Parkinson's model induced by 6-hydroxydopamine in rats. nbr 2018; 5 (4) :365-371
URL: http://nbr.khu.ac.ir/article-1-2751-en.html
islamic azad u , zzangenehnejad@yahoo.com
Abstract:   (4559 Views)
Parkinson is a long-term degenerative disorder of the central nervous system that mainly affects the motor system. Pain and emotional disorders due to Parkinson negatively affect the quality of the patient’s life. Biarum carduchrum is an antioxidant plant with some application in traditional medicine. The aim of this study is to evaluate the protective effects of Biarum carduchrum extract on pain and emotional disorders caused by 6-hydroxydopamine injection. Rats were randomly divided into 5 groups of 8 animals. The control group received normal saline. Parkinson's groups were subjected to the injection of 6- OHDA in the right anterior mid-brain (MFB). In third, fourth and fifth groups, rats received Biarum carduchrum extract at doses of 100, 200 and 400 mg/kg via gavage 7 days after induction of Parkinson for 14 days. On day 15th, behavioral tests including forced swimming test and tail flick were performed. Treatment of Parkinsonian rats with Biarum carduchrum extract at doses of 100, 200 and 400 mg dramatically reduced the duration of immobility time in the forced swimming test. Rats treated by Biarum carduchrum extract at doses of 100, 200 and 400 mg showed significantly increased resistance to pain compared with Parkinsonian rats. The results of this study show that the Biarum carduchrum extract improves depression and pain induced by Parkinson, which is probably related to its antioxidant effects.

 
Full-Text [PDF 682 kb]   (1409 Downloads)    
Type of Study: Original Article | Subject: Animal Biology
Received: 2017/02/9 | Revised: 2019/04/6 | Accepted: 2017/06/6 | Published: 2019/03/18 | ePublished: 2019/03/18

References
1. Bender, A., Krishnan. K.J., Morris, C.M., Taylor, G.A., Reeve, A.K., and Perry, R.H. 2006. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. – Nat. Genet. 38: 515-517. [DOI:10.1038/ng1769]
2. Bilang-Bleuel, A., Revah, F., Colin, P., Locquet, I., Robert, J.J., and Mallet, J. 1997.Intrastriatal injection of an adenoviral vector expressing glial-cell-line-derived neurotrophic factor prevents dopaminergic neuron degeneration and behavioral impairment in a rat model of Parkinson disease. – Proc. Natl. Acad. Sci.- 94: 8818-8823. [DOI:10.1073/pnas.94.16.8818]
3. Bläsig, J., Reinhold, K., and Herz, A. 2003.Effect of 6-hydroxydopamine, 5, 6-dihydroxytryptamine and raphe lesions on the antinociceptive actions of morphine in rats. – Psychopharmacol. 2: 22-26.
4. Boyce P.C. 2008. A taxonomic revision of Biarum. –Curtis's Botani Maga. 25: 2-17. [DOI:10.1111/j.1467-8748.2007.00607.x]
5. Dauer, W., and Przedborski, S. 2003. Parkinson's disease: mechanisms and models. – Neuron. 39: 889-909. [DOI:10.1016/S0896-6273(03)00568-3]
6. Ebadi M., Srinivasan, S.K., and Baxi, M.D. 1996. Oxidative stress and antioxidant therapy in Parkinson's disease. – Prog. Neurobiol. 48: 1-19. [DOI:10.1016/0301-0082(95)00029-1]
7. Gao, H., Cassidy, A., Schwarzschild, M.A., and Rimm, M.B. 2012. Habitual intake of dietary flavonoids and risk of Parkinson disease. – Neurol. 55: 36-45. [DOI:10.1212/WNL.0b013e31824f7fc4]
8. Hosseini, E., Rousta, E., TabibLoghmany, F., and Mahmoudpour, M. 2014. In vitro antioxidant activity of hydromethanolic extract of karde (Biarum carduchrum) and its effects on the serum lipids of rats. – Iran J. Nutr. Sci. Food Technol. 9: 1-8.
9. Kabuto H., Nishizawa, M., Tada, M., Higashio, C., Shishibori, T., Kohno, M. 2005. Zingerone [4-(4-hydroxy-3-methoxyphenyl)-2-butanone] prevents 6-hydroxydopamine-induced dopamine depression in mouse striatum and increases superoxide scavenging activity in serum. – Neurochem Res. 30: 325-332. [DOI:10.1007/s11064-005-2606-3]
10. Karimi, H. 2002. A dictionary of Iran's vegetation plants. – Tehran: Parcham Publisher 8: 3-6.
11. Lee, M.A., Walker, R.W., Hildreth, T.J., and Prentice, W.M. 2006. A Survey of pain in idiopathic Parkinson's disease. – JPSM. 32: 462-469. [DOI:10.1016/j.jpainsymman.2006.05.020]
12. Mayeux, R., Stern, Y., Rosen, J., and Leventhal, J. 1981. Depression, intellectual impairment, and Parkinson disease. – Neurol. 31: 645-649. [DOI:10.1212/WNL.31.6.645]
13. Nikoui, V., Ostadhadi, S., ImranKhan, M., and Allahverdi, A. 2016.Evaluation of the analgesic effect of Thymus kotschyanus hydroalcoholic extract in male mice by formalin and tail flick tests. – JBCP. 4: 1-6
14. Rabiei, Z., Gholami, M., and Rafieian-Kopaei, M. 2016. Antidepressant effects of Mentha pulegium in mice. – Bangladesh J. Pharmacol. 11: 711-715. [DOI:10.3329/bjp.v11i3.27318]
15. Rice-evans, C.A., Miller, N.J., Bolwell, P.G., Bramley, P.M., and Pridham, J.B. 1995. The relative antioxidant activities of plant-derived polyphenolic flavonoids. ‎– Free Radic. Res. 22: 375-383. [DOI:10.3109/10715769509145649]
16. Rijk MC, Breteler MM, and Breeijen H. 1997. Dietary antioxidants and Parkinson disease: the Rotterdam Study. – Arch. Neurol. 54: 762-765 [DOI:10.1001/archneur.1997.00550180070015]
17. Salinas M, Diaz, R., Abraham, NG, de, Galarreta, C.,M.,R., Cuadrado, A. 2003. Nerve growth factor protects against 6-hydroxydopamine-induced oxidative stress by increasing expression of heme oxygenase-1 in a phosphatidylinositol 3-kinase-dependent manner. – J. Biologi Chem. 278: 13898-13904. [DOI:10.1074/jbc.M209164200]
18. Schwarting, R., and Huston, J. 1996. Behavioral and neurochemical dynamics of neurotoxic meso-striatal dopamine lesions. – Neurotoxicology 18: 689-708.
19. Seifi Zangeneh, M., Rafieirad, M., and Sazgar, H. 2015.The effect of Kardeh (Biarum Bovei) hydro-alcoholic extract on pain threshold in STZ induced diabetic rats. – J. Herb. Drugs 6: 137-142.
20. Sowndhararajan, K., Joseph, J.M., and Manian, S. 2013.Antioxidant and free radical scavenging activities of Indian Acacias: Acacia leucophloea (Roxb.) Willd., Acacia ferruginea DC., Acacia dealbata Link. and Acacia pennata (L.) Willd. – Int. J. Food Prop. 16: 1717-1729. [DOI:10.1080/10942912.2011.604895]
21. Wernig, M., Zhao, J.P., Pruszak, J., Hedlund, E., Fu, D., and Soldner, F. 2008. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. – PNAS 105: 5856-5861. [DOI:10.1073/pnas.0801677105]
22. Williams, C.A, Harborne, J.B, and Mayo, S.J. 1981. Anthocyanin pigments and leaf flavonoids in the family Araceae. – Phytochem. 20: 217-234. [DOI:10.1016/0031-9422(81)85096-0]
23. Bredholt, H., Fjærvik, E., Johnsen, G., and S. B. Zotchev. S. B. 2008. Actinomycetes from sediments in the Trondheim fjord, Bredholt, H., Fjærvik, E., Johnsen, G. and Zotchev. S.B. 2008. Actinomycetes from sediments in the Trondheim fjord, Norway: diversity and biological activity. – Mar. Drugs 6: 12-24. [DOI:10.3390/md6010012]
24. Demain, A.L. and Sanchez, S. 2009. Microbial drug discovery: 80 years of progress. – J. Antibiotics 62: 5. [DOI:10.1038/ja.2008.16]
25. Claverias, F.P., Undabarrena, A., Gonzalez, M., Seeger, M. and Camara B. 2015. Culturable diversity and antimicrobial activity of Actinobacteria from marine sediments in Valparaísobay. Chile. – Front. Microb. 6: 737-743. [DOI:10.3389/fmicb.2015.00737]
26. Fischbach, M.A. and Walsh, C.T. 2009 Antibiotics for emerging pathogens. – Science. 325: 1089-1093. [DOI:10.1126/science.1176667]
27. Gurung, T.D., Sherpa, C., Agrawal, V.P. and Lekhak B. 2009. Isolation and characterization of antibacterial actinomycetes from soil samples of Kalapatthar, Mount Everest Region. – Nepal J. Sci. Technol. 10: 173-182. [DOI:10.3126/njst.v10i0.2957]
28. Iwai, Y. and Omura S. 1992. Cultural conditions for screening of new antibiotics. – J. Antibiot. 34: 123-141.
29. Jenifer, J.S.C.A., Donio, M.T.B.S., Viji, V.T., Velmurugan, S., Babu, M.M., Dhas, S.A. and Citarasu T. 2013. Halo-alkaliphilic actinomycetes from solar salt works in India: diversity and antimicrobial activity. – Blue Biotechnol. J. 2: 137-142.
30. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F. and Hopwood, D.A. 2000. Practical Streptomyces Genetics. Crowes, Norwich, England.
31. Mohammadi, A., Calagari, M., Ladan-Moqaddam, AR. and Mirakhori, R. 2013. Investigation on growth and physiological characteristics of Populus euphratica Oliv. Provenances at Garmsar Desert Station. – Iran. J. For. Poplar Res. 21: 115-125
32. Ramesh, S. and Mathivanan, N. 2009. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. – World. J. Microb. Biot. 25: 2103-2111. [DOI:10.1007/s11274-009-0113-4]
33. Saadoun, I. and Muhana, A. 2008. Optimal production conditions, extraction, partial purification and characterization of inhibitory compound(s) produced by Streptomyces Ds-104 isolate against multi-drug resistant Candida albicans. – Curr. Trends Biotechnol. Pharm. 2: 402-420.
34. Sharma, D., Kaur, T., Chadha, B.S. and Manhas, R.K. 2011. Antimicrobial activity of actinomycetes against multidrug resistant Staphylococcus aureus, E. coli and various other pathogens. – Trop. J. Pharm. Res. 10: 801-808. [DOI:10.4314/tjpr.v10i6.14]
35. Singh, L.S., Baruah, I. and Bora, T.C. 2006. Actinomycetes of Loktak habitat: isolation and screening for antimicrobial activities. – Biotechnol. 5: 217-221. [DOI:10.3923/biotech.2006.217.221]
36. Trabelsi, I., Oves, D., Manteca, A., Genilloud, O., Altalhi, A. and Nour, M. 2016. Antimicrobial activities of some Actinomycetes isolated from different rhizospheric soils in Tunisia. – Curr. Microbial. 73: 220-227. [DOI:10.1007/s00284-016-1053-5]
37. Ventosa, A., and Nieto. J.J. and Oren, A. 1998. Biology of moderately halophilic aerobic bacteria. – Microbiol. Mol. Biol. Rev. 62: 504-544.
38. Xue, L., Xue, Q., Chen, Q., Lin, C., Shen, G. and Zhao, J. 2013. Isolation and evaluation of Rhizosphere actinomycetes with potential application for biocontrol of Verticillium wilt of cotton. – Crop Prot. 43: 231-240. [DOI:10.1016/j.cropro.2012.10.002]
39. Yin, J., and Chen, J.C. and Wu, Q. and Chen, G.Q. 2015. Halophiles, coming stars for industrial biotechnology. – Biotechnol. Adv. 33: 1433-1442. [DOI:10.1016/j.biotechadv.2014.10.008]
40. Zhu, H., Swierstra, J., Wu, C., Girard, G., Choi, Y.H., Wamel, W.V., Sandiford, S.K. and Wezel, G.P. 2014. Eliciting antibiotics active against the ESKAPE pathogens in a collection of actinomycetes isolated from mountain soils. – Microbiol. 160: 1714-1726. [DOI:10.1099/mic.0.078295-0]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb