دوره 6، شماره 1 - ( 2-1398 )                   جلد 6 شماره 1 صفحات 130-124 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zamani Bahramabadi E, Jonoubi P, Rezanejad F. The effect of climate on water content, dormancy and dehydrins expression pattern in pistachio seeds. nbr 2019; 6 (1) :124-130
URL: http://nbr.khu.ac.ir/article-1-2943-fa.html
زمانی بهرام آبادی الهه، جنوبی پریسا، رضانژاد فرخنده. اثر اقلیم بر میزان آب، خفتگی و الگوی بیان دهیدرین‌ها‌ در دانۀ پسته. یافته‌ های نوین در علوم زیستی. 1398; 6 (1) :124-130

URL: http://nbr.khu.ac.ir/article-1-2943-fa.html


دانشگاه خوارزمی تهران ، elaheh_zamani@yahoo.com
چکیده:   (4813 مشاهده)
شرایط محیطی که گیاه والد طی تکوین دانه گذرانده است، می‌توانند روی بسیاری از خصوصیات دانه‌ها مانند درجۀ خفتگی، وزن و میزان ترکیبات آنها تأثیر گذارد. در این تحقیق، دانه‌های بالغ پسته رقم احمدآقایی جمع‌آوری شده از دو شهر رفسنجان و شهربابک واقع در استان کرمان مقایسه شدند. مشخص شد که دانه‌های شهربابک که منطقه‌ای سردتر و مرطوب‌تر است، خفتگی طولانی‌تری داشتند، اما میزان آب دو سری دانه مشابه بود. پروتئین‌های دهیدرین به­طور معمول در حفاظت سلول‌های گیاهی علیه تنش آبگیری نقش دارند. محتوای دهیدرین لپه‌ها و محورهای رویانی دو سری دانه با روش لکه‌گذاری وسترن و پادتن اختصاصی قطعه حفاظت­ شده K در پروتئین‌های دهیدرین، مقایسه شدند. مشخص شد که لپه‌ها دارای پنج نسخه دهیدرین با وزن 23، 25، 32، 39 و 48 کیلودالتون بودند که بیانشان تحت تأثیر محیط نبود. محورهای رویانی علاوه بر این پنج نسخه، هفت نسخه دیگر با وزن 17، 19، 20، 28، 67، 77 و 98 کیلودالتون داشتند که مبین حفاظت بالاتر محورهای رویانی نسبت به لپه‌ها است. نسخه‌های 25 و 28 کیلودالتونی در محورهای رویانی دانه‌های شهربابک بیان بیشتری داشتند، درحالی­ که نسخه 39 کیلودالتونی در محورهای رویانی دانه‌های رفسنجان بیشتر مشاهده شد.

 
متن کامل [PDF 868 kb]   (1337 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: علوم گیاهی
دریافت: 1396/6/26 | ویرایش نهایی: 1398/2/16 | پذیرش: 1397/4/23 | انتشار: 1398/2/10 | انتشار الکترونیک: 1398/2/10

فهرست منابع
1. Baskin, C.C. and Baskin, J.M. 1998. Seeds - ecology, biogeography, and evolution of dormancy and germination. San Diego, CA, USA: Academic Press.
2. Banerjee, A and Roychoudhury, A. 2016. Group II late embryogenesis abundant (LEA) proteins: structural and functional aspects in plant abiotic stress. - Plant Growth. Regul. 79: 1-17. [DOI:10.1007/s10725-015-0113-3]
3. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. - Anal. Biochem. 72: 248-254. [DOI:10.1006/abio.1976.9999]
4. Bremer, A., Wolff, M., Thalhammer, A. and Hincha, D.K. 2017. Folding of intrinsically disordered plant LEA proteins is driven by glycerol-induced crowding and the presence of membranes. - FEBS J. 284: 919-936. [DOI:10.1111/febs.14023]
5. Carjuzaa, P., Castellión, M., Distéfano, A.J., del Vas, M. and Maldonado, S. 2008. Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos. - Protoplasma 233: 149-156. [DOI:10.1007/s00709-008-0300-4]
6. Close, T. 1997. Dehydrins: A commonalty in the response of plants to dehydration and low temperature. - Physiol. Plant. 100: 291-296. [DOI:10.1034/j.1399-3054.1997.1000210.x]
7. Daws, MI., Lydall, E., Chmielarz, P., Leprince, O., Mathews, S., Thanos, C.A. and Pritchard, H.W. 2004. Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe. - New Phytol. 162: 157-166. [DOI:10.1111/j.1469-8137.2004.01012.x]
8. Fenner, M. 1991. The effects of the parent environment on seed germinability. - Seed 1: 75-84. [DOI:10.1017/S0960258500000696]
9. Fenner, M. 1992. Environmental influences on seed size and composition. - Hortic. Rev. 13: 183-213. [DOI:10.1002/9780470650509.ch5]
10. Figueroa, R., Herms, D.A., Cardina, J. and Doohan, D. 2010. Maternal environment effects on common groundsel (Senecio vulgaris) seed dormancy. - Weed Sci. 58: 160-166. [DOI:10.1614/WS-D-09-00006.1]
11. Gutterman, Y. 2000. Maternal effects on seeds during development. Pages 59-84 in: M. Fenner, (ed.). Seeds: The Ecology of Regeneration in Plant Communities. Wallingford, UK: CAB International. [DOI:10.1079/9780851994321.0059]
12. Jaganathan, G.K. 2016. Influence of maternal environment in developing different levels of physical dormancy and its ecological significance. - Plant Ecology. 217: 71-79. [DOI:10.1007/s11258-015-0560-y]
13. Kalemba, E.M. and Pukacka, S. 2008. Changes in late embryogenesis abundant proteins and a small heat shock protein during storage of beech (Fagus sylvatica L.) seeds. - Environ. Exper. Bot. 63: 274-280. [DOI:10.1016/j.envexpbot.2007.12.011]
14. Kalemba, E.M. and Pukacka, S. 2012. Association of protective proteins with dehydration and desiccation of orthodox and recalcitrant category seeds of three Acer genus species. - J. Plant Growth. Regul. 31: 351-362. [DOI:10.1007/s00344-011-9246-4]
15. Kermode, A.R. 1997. Approaches to elucidate the basis of desiccation-tolerance in seeds. - Seed Sci. Res. 7: 75-95. [DOI:10.1017/S0960258500003421]
16. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. - Nature 227: 680-685. [DOI:10.1038/227680a0]
17. Mukherjee, K., Roychoudhury. A., Gupta. B., Gupta. S. and Sengupta, D.N. 2006. An ABRE binding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice. - BMC Plant Biol. 6: 1-14.
18. Panza, V., Distéfano, A.J., Carjuzaa, P., Láinez, V., Del Vas, M. and Maldonado, S. 2007. Detection of dehydrin-like proteins in embryos and endosperm of mature Euterpe edulis seeds. - Protoplasma 231: 1-5. [DOI:10.1007/s00709-007-0248-9]
19. Saber Amoli, S., Naseri, A., Rahmani, G.H. and Kalirad, A. 2004. Medicinal Plants in Kerman Province. - Iranian Medicinal and Aromatic Plants Research 20: 487-532.
20. Steadman, K.J., Ellery, A.J., Chapman, R., Moore, A. and Turner, N.C. 2004. Maturation temperature and rainfall influence seed dormancy characteristics of annual ryegrass (Lolium rigidum). - Aust. J. Agric. Res. 55: 1047-1057. [DOI:10.1071/AR04083]
21. Takahashi, R., Joshee, N. and Kitagawa, Y. 1994. Induction of chilling resistance by water stress, and cDNA sequence analysis and expression of water stress-regulated genes in rice. - Plant Mol. Biol. 26(1): 339-352. [DOI:10.1007/BF00039544]
22. Tollenaar, M. 1999. Duration of the grain-filling period in maize is not affected by photoperiod and incident PPFD during vegetative phase. - Field Crops Res. 62: 15-21. [DOI:10.1016/S0378-4290(98)00170-1]
23. Vaseva, I.I, Anders, I. and Feller, U. 2014. Identification and expression of different dehydrin subclasses involved in the drought response of Trifolium repens. - J. Plant. Physiol. 171: 213-224. [DOI:10.1016/j.jplph.2013.07.013]
24. Wang, Y., Xu, H., Zhu, H., Tao, Y., Zhang, G., Zhang, L., Zhang, C., Zhang, Z. and Ma. Z. 2014. Classification and expression diversification of wheat dehydrin genes. - Plant Sci. 214: 113-120. [DOI:10.1016/j.plantsci.2013.10.005]
25. Zamani Bahramabadi, E., Jonoubi, P. and Rezanejad, F. 2018. Ultrastructural changes of pistachio (Pistacia vera L.) mature seeds and pollen in relation to desiccation. - Trees 32: 29-39. [DOI:10.1007/s00468-017-1606-7]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




کلیه حقوق این وب سایت متعلق به یافته های نوین در علوم زیستی است.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Nova Biologica Reperta

Designed & Developed by : Yektaweb