Volume 4, Issue 3 (12-2017)                   nbr 2017, 4(3): 201-208 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abdoli Nasab M, Rahimi M. Evaluation of genetic diversity and classification of watermelon (Citrullus lanatus) ecotypes using SRAP molecular markers. nbr 2017; 4 (3) :201-208
URL: http://nbr.khu.ac.ir/article-1-3009-en.html
Graduate University of Advanced Technology, Kerman,
Abstract:   (6586 Views)
Thirty eight ecotypes of watermelon were collected from different parts of Iran. After the preparation of the field, these eotypes were cultivated in a completely randomized block design with three replications. In order to invest-igate genetic diversity, genomic DNA samples were extracted from leaves and Polymerase chain reactions were optimized using 14 SRAP primer pairs. One hundred thirty six polymorphic bands were detected, of which the EM10-Me4 was the most abundant primer pair with 19 bands and EM16-Me4 and EM16-Me14 were the least primer pairs with 7 bands. PIC index varied from 0.20 to 0.32 and genetic diversity was 0.17 to 0.28 on the basis of Nei index. Fisher's Linear Detection Analysis showed that the UPGMA method and the grouping accuracy of about 90% are more appropriate than other cluster analysis methods. Cluster analysis, using Jakard method, was performed and the ecotypes studied were classified into five distinct groups. Based on the PCA, the first and second components included 92.5% of the variation, which represents the proper distribution of the markers on the whole genome.
Full-Text [PDF 432 kb]   (2750 Downloads)    
Type of Study: Original Article | Subject: Animal Biology
Received: 2017/12/9 | Revised: 2021/05/22 | Accepted: 2017/12/9 | Published: 2017/12/9 | ePublished: 2017/12/9

References
1. Brickell, C. 1992. The Royal Horticultural Society Encyclopedia of Gardening. – London: Dorling Kindersley. p. 333
2. Che, K., Liang, C., Wang, Y., Jin, D., Wang, B., Xu, Y., Kang, G. and Zhang, H. 2012. Genetic assessment of watermelon germplasm using the AFLP technique. – Hort. Science. 137: 311-315.
3. Dane, F. and Liu, J. 2007. Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). – Genet. Resour. Crop Ev. 54: 1255-1265.
4. Ferriol, M., Pico, B., Cordova, P. and Nuez, F. 2004. Molecular diversity of a germplasm collection of sq-uash (Cucurbita moschata) determined by SRAP and AFLP markers. – Crop Science 44: 653–664.
5. Gama, R., Santos, C.F., Dias, R. and Souza, F. 2013. Molecular characterization of watermelon cultivars
6. using microsatellite markers. – Hortic. Bras. 31: 522-527.
7. Ghareyazi, B. 1998. The application of DNA markers in plant breeding. – Proceedings of the Fourth Confer-ence on Agronomy and Plant Breeding. Sanati Isfahan University. 42: 328-381.
8. Jeffrey, C. 2001. Cucurbitaceae. In: Hanelt P. (ed.), Mansfeld's encyclopedia of agricultural and horticultural crops. – Vol. 3 Springer, Berlin Heidelberg New York. pp: 1510-1557.
9. Lavi, U., Cregan, P. Schaap, T., and Hillel, J. 1994. Application of DNA markers for identification and breeding of perennial fruit crops. – Plant Breeding Rev. 12: 195-226.
10. Ghareyazi, B. 1998. The application of DNA markers in plant breeding. – Proceedings of the Fourth Conference on Agronomy and Plant Breeding. Sanati Isfahan University 42: 328-381.
11. Gvozdanovic-Varga, J., Vasic, M., Milic, D. and Cerv-enski, J. 2011. Diallel cross analysis for fruit traits in watermelon. – Genetika 43: 163-174.
12. Ipek Uluturk, Z., Frary, A. and Doganlar, S. 2011. Determination of genetic diversity in watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] germplasm. – Austr. Jour. Crop Sci. 5: 1832-1836.
13. Levi, A. and Thomas, C.E. 2001. Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. – Hortscience 36: 1096-1101.
14. Li, G., and Quiros, C.F. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. – Theor. Appl. Genet. 103: 455-461.
15. Lincoln, S.E., Daly, M.J. and Lander, E.S. 1993. Constructing genetic maps with MAPMAKER/EXP version 3.0, a tutorial and reference manual. In: Whitehead Inst. Biomed Res. Tech. Rpt. (3rd ed). – Whitehead Institute for Biomedical Research, Cambridge.
16. Liu, K. and Muse, S.V. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. – Bioinformatics 21: 2128-2129.
17. Mujaju, C., Sehic, J., Werlemark, G., Garkava-Gustavsson, L., Fatih, M. and Nybom, H. 2010. Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. – Hereditas. 147: 142-153
18. Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. – Nucl. Acid. Res. 8: 4321-4326.
19. NarouiRad, M., AllahDo, M., Ghasemi, A. and Fanaei, H. 2009. Investigation of Genetic Diversity and Broad Sense Heritability in Watermelon Access-ions of Sistan. – Iranian Journal of Horticultural Science 44: 95-103.
20. Nei, M. 1972. Genetic distance between populations. – Am. Nat. 106: 283-292.
21. Neuhausen, S.L. 1992. Evaluation of restriction fragment length polymorphism in Cucumis melo. – Theor. Appl. Genet. 83: 379-384.
22. Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R. and Martin-Belloso, O. 2005. Use of distribution for describing kinetics of antioxidant potential changes in fresh-cut watermelon. – J. Food Eng. 95: 99-105.
23. Raghami, M., Hasandokht, M., Fatahi-Moghadam, M., Kashi, A. and López-Sesé, A. 2013. Genetic diversity between and within Iranian melon accessions, and their relationships with melon germplasm of diverse origins, using microsatellite markers. – Iranian Journal of Horticultural Science 44: 287-300
24. Rasoulzadegan, Y. 1991. Fruit tree cultivation in moderate climates. 1st Ed. Sanati Isfahan University Publications, p: 57-87.
25. Robertson, H. 2004. Citrullus lanatus (Watermelon, Tsamma). – Museums Online South Africa. Iziko Museums of Cape Town Online Publication, http://museums.org.za/bio/index.htm.
26. Sheng, Y., Luan, F., Zhang, F. and Davis, A.R. 2012. Genetic diversity within Chinese watermelon ecotypes compared with germplasm from other countries. – J. Amer. Soc. Hort. Sci. 3: 144-151.
27. Zhu, J., Gale, M.D., and Guarrie, S. 1998. AFLP markers for the study of rice biodiversity. – Theo. App. Genet. 96: 602-611.
29. Brickell, C. 1992. The Royal Horticultural Society Encyclopedia of Gardening. – London: Dorling Kindersley. p. 333
30. Che, K., Liang, C., Wang, Y., Jin, D., Wang, B., Xu, Y., Kang, G. and Zhang, H. 2012. Genetic assessment of watermelon germplasm using the AFLP technique. – Hort. Science. 137: 311-315.
31. Dane, F. and Liu, J. 2007. Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). – Genet. Resour. Crop Ev. 54: 1255-1265. [DOI:10.1007/s10722-006-9107-3]
32. Ferriol, M., Pico, B., Cordova, P. and Nuez, F. 2004. Molecular diversity of a germplasm collection of sq-uash (Cucurbita moschata) determined by SRAP and AFLP markers. – Crop Science 44: 653–664. [DOI:10.2135/cropsci2004.6530]
33. Gama, R., Santos, C.F., Dias, R. and Souza, F. 2013. Molecular characterization of watermelon cultivars using microsatellite markers. – Hortic. Bras. 31: 522-527. [DOI:10.1590/S0102-05362013000400003]
34. Ghareyazi, B. 1998. The application of DNA markers in plant breeding. – Proceedings of the Fourth Confer-ence on Agronomy and Plant Breeding. Sanati Isfahan University. 42: 328-381.
35. Jeffrey, C. 2001. Cucurbitaceae. In: Hanelt P. (ed.), Mansfeld\'s encyclopedia of agricultural and horticultural crops. – Vol. 3 Springer, Berlin Heidelberg New York. pp: 1510-1557.
36. Lavi, U., Cregan, P. Schaap, T., and Hillel, J. 1994. Application of DNA markers for identification and breeding of perennial fruit crops. – Plant Breeding Rev. 12: 195-226. [DOI:10.1002/9780470650493.ch7]
37. Ghareyazi, B. 1998. The application of DNA markers in plant breeding. – Proceedings of the Fourth Conference on Agronomy and Plant Breeding. Sanati Isfahan University 42: 328-381.
38. Gvozdanovic-Varga, J., Vasic, M., Milic, D. and Cerv-enski, J. 2011. Diallel cross analysis for fruit traits in watermelon. – Genetika 43: 163-174. [DOI:10.2298/GENSR1101163G]
39. Ipek Uluturk, Z., Frary, A. and Doganlar, S. 2011. Determination of genetic diversity in watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] germplasm. – Austr. Jour. Crop Sci. 5: 1832-1836.
40. Levi, A. and Thomas, C.E. 2001. Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. – Hortscience 36: 1096-1101.
41. Li, G., and Quiros, C.F. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. – Theor. Appl. Genet. 103: 455-461. [DOI:10.1007/s001220100570]
42. Lincoln, S.E., Daly, M.J. and Lander, E.S. 1993. Constructing genetic maps with MAPMAKER/EXP version 3.0, a tutorial and reference manual. In: Whitehead Inst. Biomed Res. Tech. Rpt. (3rd ed). – Whitehead Institute for Biomedical Research, Cambridge.
43. Liu, K. and Muse, S.V. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. – Bioinformatics 21: 2128-2129. [DOI:10.1093/bioinformatics/bti282]
44. Mujaju, C., Sehic, J., Werlemark, G., Garkava-Gustavsson, L., Fatih, M. and Nybom, H. 2010. Genetic diversity in watermelon (Citrullus lanatus) landraces from Zimbabwe revealed by RAPD and SSR markers. – Hereditas. 147: 142-153 [DOI:10.1111/j.1601-5223.2010.02165.x]
45. Murray, M.G. and Thompson, W.F. 1980. Rapid isolation of high molecular weight plant DNA. – Nucl. Acid. Res. 8: 4321-4326. [DOI:10.1093/nar/8.19.4321]
46. NarouiRad, M., AllahDo, M., Ghasemi, A. and Fanaei, H. 2009. Investigation of Genetic Diversity and Broad Sense Heritability in Watermelon Access-ions of Sistan. – Iranian Journal of Horticultural Science 44: 95-103.
47. Nei, M. 1972. Genetic distance between populations. – Am. Nat. 106: 283-292. [DOI:10.1086/282771]
48. Neuhausen, S.L. 1992. Evaluation of restriction fragment length polymorphism in Cucumis melo. – Theor. Appl. Genet. 83: 379-384. [DOI:10.1007/BF00224286]
49. Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R. and Martin-Belloso, O. 2005. Use of distribution for describing kinetics of antioxidant potential changes in fresh-cut watermelon. – J. Food Eng. 95: 99-105. [DOI:10.1016/j.jfoodeng.2009.04.016]
50. Raghami, M., Hasandokht, M., Fatahi-Moghadam, M., Kashi, A. and López-Sesé, A. 2013. Genetic diversity between and within Iranian melon accessions, and their relationships with melon germplasm of diverse origins, using microsatellite markers. – Iranian Journal of Horticultural Science 44: 287-300
51. Rasoulzadegan, Y. 1991. Fruit tree cultivation in moderate climates. 1st Ed. Sanati Isfahan University Publications, p: 57-87.
52. Robertson, H. 2004. Citrullus lanatus (Watermelon, Tsamma). – Museums Online South Africa. Iziko Museums of Cape Town Online Publication, http://museums.org.za/bio/index.htm.
53. Sheng, Y., Luan, F., Zhang, F. and Davis, A.R. 2012. Genetic diversity within Chinese watermelon ecotypes compared with germplasm from other countries. – J. Amer. Soc. Hort. Sci. 3: 144-151.
54. Zhu, J., Gale, M.D., and Guarrie, S. 1998. AFLP markers for the study of rice biodiversity. – Theo. App. Genet. 96: 602-611. [DOI:10.1007/s001220050778]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.



© 2025 CC BY-NC 4.0 | Nova Biologica Reperta

Designed & Developed by : Yektaweb