دوره 6، شماره 4 - ( 10-1398 )                   جلد 6 شماره 4 صفحات 445-435 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zadeh-Hosseingholi E, Chaparzadeh N, Mahmudi Aghdam S. Isolation and characterization of plant growth-promoting bacteria from Syrian bean caper (Zygophyllum fabago) rhizosphere . nbr 2020; 6 (4) :435-445
URL: http://nbr.khu.ac.ir/article-1-3046-fa.html
زاده حسینقلی الهه، چاپارزاده نادر، محمودی اقدم سمیرا. جداسازی و شناسایی باکتری­ های محرک رشد از ریشه­ سپهر گیاه اسپندک. یافته‌ های نوین در علوم زیستی. 1398; 6 (4) :435-445

URL: http://nbr.khu.ac.ir/article-1-3046-fa.html


دانشگاه شهید مدنی آذربایجان ، nchapar@azaruniv.ac.ir
چکیده:   (4538 مشاهده)

برخی از ریزوباکتری­ ها اثرات مفید بر رشد گیاهان دارند. اسپندک (Zygophyllum fabago) یک علف هرز با ارزش دارویی است. در تحقیق حاضر باکتری های ریشه سپهر این گیاه جداسازی و شناسایی شدند. خصوصیات مرتبط با تحریک رشد گیاه مانند انحلال فسفات و روی، تولید ایندول استیک اسید و فعالیت ضد قارچی جدایه ها مورد برر سی قرار گرفت. سپس جدایه ها جداگانه به گیاه تلقیح شده و پس از حصول اطمینان از استقرار آن­ ها در ریشه، کارایی آن­ ها در افزایش رشد گیاه در شرایط گلخانه ­ای سنجیده شد. نتایج شناسایی بیوشیمیایی و مولکولی نشان داد که 5 جدایه حاصل متعلق به جنس­ های Bacillus، Pseudomonas، Pantoea و Brevibacterium بودند. همه 5 جدایه درجاتی از توانایی در تحریک رشد گیاه را نشان دادند. از میان جدایه ­ها، فقط جدایه متعلق به جنس Bacillus توانست وزن خشک گیاهان را به طور معنی­ داری افزایش دهد. میزان انحلال فسفات این جدایه برابر با 440 میکروگرم در میلی ­لیتر و میزان تولید اسید آن در محیط کشت بیش از سایر جدایه­ ها بود. جدایه فوق با داشتن قدرت انحلال عنصر روی، ایندول استیک اسید را به مقدار 89/3 میلی­گرم در میلی ­لیتر تولید کرد. با این وجود این جدایه فعالیت ضد قارچی بر علیه دو قارچ بیماری­ زای گیاهی Aspergillus niger و Botrytis cinerea را نشان نداد.

 
متن کامل [PDF 956 kb]   (1532 دریافت)    
نوع مطالعه: مقاله پژوهشی | موضوع مقاله: میکروبیولوژی
دریافت: 1396/10/12 | ویرایش نهایی: 1398/12/5 | پذیرش: 1398/8/13 | انتشار: 1398/10/18 | انتشار الکترونیک: 1398/10/18

فهرست منابع
1. Abdel-Hamid, R., Abilov, Z., Sultanova, N., Saitjanova, S. and Gemedzhieva, N. 2013. Preliminary phytochemical screening of Zygophyllum fabago. - Int. J. Biol. Chem. 6: 60-4.
2. Afzal, I., Shinwari, Z. and Iqrar, I. 2015. Selective isolation and characterization of agriculturally beneficial endophytic bacteria from wild hemp using canola. - Pak. J. Bot. 47: 1999-2008.
3. Ahmad, F., Ahmad, I. and Khan, M. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. - Microbiol. Res. 163: 173-181. [DOI:10.1016/j.micres.2006.04.001]
4. Antoun, H. 2013. Brenner's encyclopedia of genetics. - Elseivier, New York, 4368 pp.
5. Ashrafuzzaman, M., Hossen, F., Ismail, M., Hoque, A., Islam, M., Shahidullah, S. and Meon, S. 2009. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth. - Afr. J. Biotechnol. 8: 1247-1252.
6. Bartholomew, J. and Mittwer, T. 1950. A simplified bacterial spore stain. - Stain Technol. 25: 153-156. [DOI:10.3109/10520295009110979]
7. Bhattacharyya, P. and Jha, D. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. - World J. Microbiol. Biotechnol. 28: 1327-1350. [DOI:10.1007/s11274-011-0979-9]
8. Cherif-Silini, H., Silini, A., Yahiaoui, B., Ouzari, I. and Boudabous, A. 2016. Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. - Ann. Microbiol. 66: 1087-1097. [DOI:10.1007/s13213-016-1194-6]
9. Chernin, L., Ismailov, Z., Haran, S. and Chet, I. 1995. Chitinolytic enterobacter agglomerans antagonistic to fungal plant pathogens. - Appl. Environ. Microbiol. 61: 1720-1726. [DOI:10.1128/AEM.61.5.1720-1726.1995]
10. Dastager, S., Deepa, C. and Pandey, A. 2010. Isolation and characterization of novel plant growth promoting Micrococcus sp. NII-0909 and its interaction with cowpea. - Plant Physiol. Biochem. 48: 987-992. [DOI:10.1016/j.plaphy.2010.09.006]
11. Dawwam, G., Elbeltagy, A, Emara, H., Abbas, I. and Hassan, M. 2013. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. - Ann. Agric. Sci. 58: 195-201. [DOI:10.1016/j.aoas.2013.07.007]
12. Dobbelaere, S., Vanderleyden, J. and Okon, Y. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. - Crit. Rev. Plant Sci. 22: 107-149. [DOI:10.1080/713610853]
13. Dworkin, M., and Foster, J. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. - J. Bacteriol. 75: 592-603. [DOI:10.1128/JB.75.5.592-603.1958]
14. Egamberdieva, D. 2010. Growth response of wheat cultivars to bacterial inoculation in calcareous soil. - Plant Soil Environ. 56: 570-573. [DOI:10.17221/75/2010-PSE]
15. Faller, A., and Schleifer, K. 1981. Modified oxidase and benzidine tests for separation of staphylococci from micrococci. - J. Clin. Microbiol. 13: 1031-1035. [DOI:10.1128/JCM.13.6.1031-1035.1981]
16. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. - Evolution 39: 783-791. [DOI:10.1111/j.1558-5646.1985.tb00420.x]
17. Frank, J., Reich, C., Sharma, S., Weisbaum, J., Wilson, B., and Olsen, G. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. - Appl. Environ. Microbiol. 74: 2461-2470. [DOI:10.1128/AEM.02272-07]
18. Gordon, S., Weber, R. 1951. Colorimetric estimation of indoleacetic acid. - Plant Physiol. 26: 192-195. [DOI:10.1104/pp.26.1.192]
19. Gusain, Y., Kamal, R., Mehta, C., Singh, U. and Sharma, A. 2015. Phosphate solubilizing and indole-3-acetic acid producing bacteria from the soil of Garhwal Himalaya aimed to improve the growth of rice. - J. Environ. Biol. 36: 301.
20. Hafeez, F., Yasmin, S., Ariani, D., Zafar, Y. and Malik, K. 2006. Plant growth-promoting bacteria as biofertilizer. - Agron. Sustain. Dev. 26: 143-150. [DOI:10.1051/agro:2006007]
21. Hopkins, W. and Huner, N. 2012. Introduction to plant physiology. - APS press, Minnesota, 528 pp.
22. Khan, M., Zaidi, A., and Wani, P. 2009. Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. - Agron Sustain Dev. 27: 29-43. [DOI:10.1051/agro:2006011]
23. Khan, S., Khan, A., Khan, A., Wadood, A., Farooq, U., Ahmed, A., Ahmed V. U., Sener, B. and Erdemoglu, N. 2014. Urease inhibitory activity of ursane type sulfated saponins from the aerial parts of Zygophyllum fabago Linn. - Phytomedicine 21: 379-382. [DOI:10.1016/j.phymed.2013.09.009]
24. Kim, Y., Kotnala, B., Kim, Y. and Jeon, Y. 2016. Biological characteristics of Paenibacillus polymyxa GBR-1 involved in root rot of stored Korean ginseng. - J. Ginseng. Res. 40: 453-461. [DOI:10.1016/j.jgr.2015.09.003]
25. Luna, M., Galar, M., Aprea, J., Molinari, M. and Boiardi, J. 2010. Colonization of sorghum and wheat by seed inoculation with Gluconacetobacter diazotrophicus. - Biotechnol. Lett.. 32:1071-1076. [DOI:10.1007/s10529-010-0256-2]
26. Majeed, A., Abbasi, M., Hameed, S., Imran, A. and Rahim, N. 2015. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion. - Front. Microbiol. 6: 198. [DOI:10.3389/fmicb.2015.00198]
27. Malboobi, M., Owlia, P., Behbahani, M., Sarokhani, E., Moradi, S., Yakhchali, B., Deljou, A., Morabbi Heravi, K., 2009. Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. - World J. Microbiol. Biotechnol. 25: 1471-1477. [DOI:10.1007/s11274-009-0037-z]
28. Mishra, A., Chauhan, P., Chaudhry, V., Tripathi, M. and Nautiyal, C. 2011. Rhizosphere competent Pantoea agglomerans enhances maize (Zea mays) and chickpea (Cicer arietinum L.) growth, without altering the rhizosphere functional diversity. - Anton. Leeuw. Int. J.G. 100: 405-413. [DOI:10.1007/s10482-011-9596-8]
29. Mufti, R., Amna Rafique, M., Haq, F., Hussain, M., Munis, M. F. H., Masood, S, Mumtaz A. S and Javed Chaudhary, H. 2015. Genetic diversity and metal resistance assessment of endophytes isolated from Oxalis corniculata. - Soil Environ. 34: 89-99.
30. Mumtaz, M., Ahmad, M., Jamil, M. and Hussain, T. 2017. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. - Microbiol. Res. 202: 51-60. [DOI:10.1016/j.micres.2017.06.001]
31. Munimbazi, C., and Bullerman, L. 1998. Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. - J. Appl. Microbiol. 84: 959-968. [DOI:10.1046/j.1365-2672.1998.00431.x]
32. Nicoara, A., Neagoe, A., Stancu, P., de Giudici, G., Langella, F., Sprocati, A. R., Iordache, V. and Kothe, E. 2014. Coupled pot and lysimeter experiments assessing plant performance in microbially assisted phytoremediation. - Environ. Sci. Pollut Res. 21: 6905-6920. [DOI:10.1007/s11356-013-2489-9]
33. Pikovskaya, R., 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. - Mikrobiologiya 17: 362-370.
34. Pirhadi, M., Enayatizamir, N., Motamedi, H. and Sorkheh, K. 2016. Screening of salt tolerant sugarcane endophytic bacteria with potassium and zinc for their solubilizing and antifungal activity. - Biosc. Biotech. Res. 9: 530-538. [DOI:10.21786/bbrc/9.3/28]
35. Queipo-Ortuo, M., Colmenero, J., Macias, M., Bravo, M. and Morata, P. 2008. Preparation of bacterial DNA template by boiling and effect of immunoglobulin G as an inhibitor in real-time PCR for serum samples from patients with brucellosis. - Clin. Vaccine Immunol. 15: 293-296. [DOI:10.1128/CVI.00270-07]
36. Raza, F., Amin, A. and Faisal, M. 2015. Desiccation-tolerant rhizobacteria from Cholistan desert, Pakistan, and their impact on Zea mays L. - Pol. J. Environ. 24: 1173-1181. [DOI:10.15244/pjoes/26386]
37. Satomi, M., La Duc, M. and Venkateswaran, K. 2006. Bacillus safensis sp. nov., isolated from spacecraft and assembly-facility surfaces. - Int. J. Syst. Evol. Microbiol. 56: 1735-1740. [DOI:10.1099/ijs.0.64189-0]
38. Sharma, S., Sharma, M., Ramesh, A. and Joshi, O. 2012. Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. - J. Microbiol. Biotech. 22: 352-359. [DOI:10.4014/jmb.1106.05063]
39. Shrestha, A., Kim, B. and Park, D. 2014. Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. - Biocontrol Sci. Technol. 24: 763-779. [DOI:10.1080/09583157.2014.894495]
40. Simons, M., Van Der Bij, A., Brand, I., De Weger, L., Wijffelman, C. and Lugtenberg, B. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. - Mol. Plant Microbe Interact. 9: 600-607. [DOI:10.1094/MPMI-9-0600]
41. Son, H., Park, G., Cha, M. and Heo, M. 2006. Solubilization of insoluble inorganic phosphates by a novel salt-and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. - Bioresour. Technol. 97: 204-210. [DOI:10.1016/j.biortech.2005.02.021]
42. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods - Mol. Biol. Evol. 28: 2731-2739. [DOI:10.1093/molbev/msr121]
43. Taylor, W., Achanzar, D. 1972. Catalase test as an aid to the identification of Enterobacteriaceae. - Appl. Microbiol. 24: 58-61 [DOI:10.1128/AEM.24.1.58-61.1972]
44. Trotel-Aziz, P., Couderchet, M., Biagianti, S., and Aziz, A. 2008. Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. - Environ. Exp. Bot. 64: 21-32. [DOI:10.1016/j.envexpbot.2007.12.009]
45. Turan, M., Ekinci, M., Yildirim, E., GNE, A., Karaguz, K., Kotan, R., and Dursun, A. 2014. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. - Turk. J. Agric. For. 38: 327-333. [DOI:10.3906/tar-1308-62]
46. Twedt, R., Spaulding, P., and Hall, H. 1969. Morphological, cultural, biochemical, and serological comparison of Japanese strains of Vibrio parahemolyticus with related cultures isolated in the United States. - J. Bacteriol. 98: 511-518. [DOI:10.1128/JB.98.2.511-518.1969]
47. Verma, P., Yadav, A., Kazy, S., Saxena, A. and Suman, A. 2014. Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. - Int. J. Curr. Microbiol. App. Sci. 3: 432-447.
48. Xu, J. 2014. Isolation and assessment of nitrogen-fixing and phosphate-solubilizing bacteria for use as biofertilizers. - Auburn University, Auburn, 145 pp.
49. Yoon, S., Ha, S., Kwon, S., Lim, J., Kim, Y. Seo, H. and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. - Int. J. Syst. Evol. Microbiol. 67: 1613-1617. [DOI:10.1099/ijsem.0.001755]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

Creative Commons Licence
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




کلیه حقوق این وب سایت متعلق به یافته های نوین در علوم زیستی است.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2015 All Rights Reserved | Nova Biologica Reperta

Designed & Developed by : Yektaweb