The Chador-Malu open-pit mine is faces complex challenges regarding the long-term stability of its slopes. These are directly influenced by time, environmental changes, and stresses induced by mining activities. Considering the existing evidence of potential future instability, displacement changes along the northern to eastern pit walls were analyzed over an 18-month period. Long-term wall displacements were measured using radar. Through back-analysis and three-dimensional numerical simulations, the equivalent creep behavior of the slopes was evaluated using the Maxwell creep model. After assessing the geomechanical parameters, the impact of three scenarios passage of time, bench widening, and pit deepening on slope stability was investigated under three horizontal-to-vertical stress ratios of 0.5, 1, and 1.5. The analysis results indicated that a horizontal-to-vertical stress ratio of 1.5 better matched the field observations. In the first scenario, a 50% increase in time led to over a 100% increase in displacement rates, indicating a rise in instability potential over time. In the second scenario, unloading the first two benches reduces the instability potential, due to an 18% reduction in uplift while unloading up to the eighth bench increased instability potential due to the reduction of weight at the slide’s toe and an increase in the average uplift. In the third scenario, pit deepening formed another sliding zone between the tenth and seventeenth benches.
Type of Study:
Original Research |
Subject:
Geotecnic Received: 2025/03/18 | Accepted: 2025/05/30 | Published: 2025/06/20