Volume 25, Issue 79 (12-2025)                   jgs 2025, 25(79): 300-315 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Bairanvand E, Gandomkar A, Abbasi A, Khodaghoi M. (2025). Detection of the effect of microphysical properties of flood-producing clouds in Lorestan province using MODIS cloud sensor products. jgs. 25(79), 300-315. doi:10.61882/jgs.25.79.9
URL: http://jgs.khu.ac.ir/article-1-4165-en.html
1- PhD student in Meteorology, Department of Geography, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2- Associate Professor, Department of Geography, Najafabad Branch, Islamic Azad University, Najafabad, Iran. , aagandomkar@gmail.com
3- Assistant Professor, Department of Geography, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
4- Associate Professor, Rangeland Research Division, Rangelands and Forests of Institute Research, Agricultural Research Extension Education Organization (AREEO), Tehran, Iran.
Abstract:   (7007 Views)
The torrential rains that occurred in April 2017 in Lorestan Province exemplified severe precipitation that inflicted substantial damage on agricultural, urban, transportation, and communication infrastructures. This study aims to investigate and elucidate the relationship between the physical structure of clouds responsible for two waves of heavy rainfall in April 2017 within the Doroud catchment area of Boroujerd. In this context, the statistical characteristics of two precipitation events on March 25 and April 1, 2019, were analyzed. The microphysical properties of the clouds generating these two heavy rainfall events were examined utilizing the Madis superconductor product and MOD06. Four microphysical factors contributing to the formation of clouds during these two rainfall waves in the Doroud-Borujerd basin—including cloud top temperature (CTT), cloud top pressure (CTP), optical cloud thickness (OCT), and cloud cover ratio (CFR)—were analyzed. Statistical assessments indicated that the first wave of heavy rainfall, occurring on March 25, 2019 (5 April 1398), accounted for 15% of the total annual rainfall, while the second wave on April 1, 2019 (12 April 1398) contributed 20% of the region's average annual rainfall within these two days. The findings from the analysis of the microphysical structure of the clouds producing these two precipitation waves, based on data from the MODIS cloud sensor product, revealed a significant spatial correlation between the four microphysical factors and the recorded precipitation values of these two heavy rainfall events. Specifically, the cloud top temperature and pressure, indicative of vertical cloud expansion in the area, exhibited a significant inverse relationship with the precipitation amounts in the basin. Conversely, the cloud cover ratio and optical thickness demonstrated a direct and significant spatial correlation with the recorded rainfall values. The results of this study thus establish a significant and robust relationship between the microphysical structure of clouds and the precipitation amounts recorded in the region during these two heavy rainfall events. 
Full-Text [PDF 1818 kb]   (71 Downloads)    
Type of Study: Research | Subject: climatology

References
1. جوان، کاظم؛ طاهری شهرآیینی، حمید؛ نصیری صالح فرزین؛ حبیبی نوخندان، مجید. (1390). روشی جدید جهت پیشبینی پراکنش مکانی دما و بارش در حوضه آبریز رودخانه قره سو اردبیل، نشریه پژوهش های اقلیم شناسی، 2(5 و 6):117-130.
2. داداشی رودباری، عباسعلی؛ فلاح قالهری، غلام عباس؛ کرمی، مختار؛ باعقیده، محمد .(1395). تحلیل تغییرات بارش حوضه آبریز هراز با استفاده از روش های آماری و تکنیک تحلیل طیفی، هیدروژئومورفولوژی، 7: 59-86.
3. دهبان، حسین؛ ابراهیمی، کیومرث؛ عراقی نژاد، شهاب؛ بذر افشان، جواد .(1398). ارزیابی دقت مدل های NMME در پیش بینی بارش ماهانه مطالعه موردی حوضه سفید رود، نشریه هواشناسی کشاورزی، 7(1): 3-12.
4. سلاجقه، علی؛ مقدم نیا، علیرضا؛ خلیقی سیگارودی، شهرام؛ آذرخشی، مریم؛ رستمی خلج، محمد. (1390). مدل سازی بارش رواناب مبتنی بر رویکرد پویایی سیستم مطالعه موردی حوضه کارده مشهد، نشریه علمی پژوهشی مهندسی و مدیریت آبخیز، 11(1): 15-27.
5. قاسمی فر، الهام؛ ناصرپور، سمیه؛ ارزومندی، لیلی. (1396). شناسایی الگوهای سینوپتیکی بارش های سیل خیز غرب ایران، نشریه تحلیل فضایی مخاطرات محیطی، 4(2):69-86
6. گندمکار، امیر؛ رییسی، توران .(1391). رابطه بارش و رواناب در حوضه گوجان، مجله جغرافیایی سپهر، 21(1): 38- 40
7. مهدی نسب، مهدی؛ طاووسی، تقی؛ میرزایی، رضا. (1393). پیش بینی احتمال وقوع سیل و حداکثر بارش متحمل زیر حوضه پلدختر با استفاده از روش سری های جزیی، فصلنامه علمی پژوهشی اکوسیستم های طبیعی ایران، 5(1):97 -109
8. نگارش، حسین؛ ویسی، جلیل .(1392). تجزیه و تحلیل اثرات تغییر بارش در سیل خیزی حوضه آبریز رود خانه راوند منطقه اسلام آباد غرب استان کرمانشاه، فصلنامه علمی پژوهشی برنامه ریزی منطقه ای، 3(11):79-98.
9. رسولی، علی اکبر؛ جهانبخش، سعید؛ قاسمی، احمدرضا؛"بررسی ارتباط بین پارامترهای مهم ابر و بارش روزانه در ایران"، فصلنامه تحقیقات جغرافیایی، سال 29، شماره اول، صص 23 -42، 1393
10. حاتمی بهمن بیگلو، خداکرم؛ موحدی، سعید؛ "شناسایی فصلی و ماهانه ابرناکی در ایران با بهره گیری از داده‌‌های فرآورده ابر سنجنده دمودیس ماهواره تررا"، جغرافیا و توسعه، شماره 50، صص 213-230‌، 1395
11. Pan, B., Liu, D. , Kuma,r K., Wang, M., & LathaDevi, N.(2021). Global distribution of maritime low clouds with an emphasis on different aerosol types and meteorological parameters inferred from multi-satellite and reanalysis data during 2007-2016, Atmospheric Environment, 246(1). [DOI:10.1016/j.atmosenv.2020.118082]
12. Kumar, K.N., Suzuki, K. (2019). Assessment of seasonal cloud properties in the United Arab Emirates and adjoining regions from geostationary satellite data. Remote Sens. Environ. , 228, 90-104. [DOI:10.1016/j.rse.2019.04.024]
13. Halimi M., Rezaei M., Mohammadi Ch. & Farajzadeh M.( 2017). Association between cloudiness and rainfall over Fars province in Iran, Russian Meteorology and Hydrology, 42, 671-676, [DOI:10.3103/S1068373917100077]
14. Trenberth, K. E. ; Fasullo, J. T. ; "Global warming due to increasing absorbed solar radiation. Geophys, "Res. Lett. , 36, L07706, P. p 1-5, 2009 [DOI:10.1029/2009GL037527]
15. Filipiak, J. , and Mietus, M. 2009. Spatial and temporal variability of cloudiness in Poland, 1971-2000. Int. J. Climatol. , 29: 1294-1311. [DOI:10.1002/joc.1777]
16. Dim, J. R. ; Murakami, H T. ; Nakajima Y. ; Nordell, B. ; Heidinger, A. K. ; Takamura, T. ; (2011), " The recent state of theclimate: Driving components of cloud-type variability", J. Geophys. Research. 116, P. p 1-14, 2011 [DOI:10.1029/2010JD014559]
17. Jaswal, A. K. ; Variability and Changes in Cloud Cover Over India During 1951-2010. In Observed ClimateVariability and Change over the Indian Region (pp. 107-127). Springer Singapore, 2017 [DOI:10.1007/978-981-10-2531-0_7]
18. Wenjing, Z. , Ning, Z. , & Jianning, S. (2014). Spatiotemporal Variations of Cloud Amount over the Yangtze River Delta, China. Journal of Meteorological Research, 28(3), 371-380. [DOI:10.1007/s13351-014-3064-0]
19. Choobari A., Gharaylou M. 2017, Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation, Atmospheric Research, 185(1), 43-64 [DOI:10.1016/j.atmosres.2016.10.021]
20. Sarangi Ch., Tripathi S., KanawadeV., Koren I., and Sivanand D., 2017., Investigation of the aerosol-cloud-rainfall association over the Indian summer monsoon region, Atmos. Chem. Phys., 17(1), 5185-5204 doi:10.5194/acp-17-5185-2017 [DOI:10.5194/acp-17-5185-2017]
21. Chakraborty S., Maitra, A. (2013). Interrelation between microphysical and optical properties of cloud and rainfall in the Indian region. Indian Journal of Radio & Space Physics, 42. 105-112. http://hdl.handle.net/123456789/17096
22. World Meteorological Organization. 2011.Weather extremes in a changing climate: hindsight on foresinght, ISBN:978-92-63- 11075-6
23. Mehta, L., Srivastava, S., Adam, H.N. Bose A.S., Ghosh U., Kumar V.,(2019), Climate change and uncertainty from 'above' and 'below': perspectives from India. Reg Environ Change ,19: 1533-1547. [DOI:10.1007/s10113-019-01479-7]
24. Her, Y., Yoo, SH., Cho, J. , Hwang S., Jeong J. & Seong C.,( 2019), Uncertainty in hydrological analysis of climate change: multi-parameter vs. multi-GCM ensemble predictions. Sci Rep, 9, 4974 [DOI:10.1038/s41598-019-41334-7] [PMID] []
25. Curry ,JA., Webster, PJ., (2011), Climate science and the uncertainty monster, Bull Am Meteorol Soc ,92(12):1667-1682. [DOI:10.1175/2011BAMS3139.1]
26. Punay, J., Perez, G.J.P., (2014), Evaluation of MODIS Cloud Product-derived rainfall estimates. 35th Asian Conference on Remote Sensing 2014, ACRS 2014: Sensing for Reintegration of Societies.
27. Platnick, S., Meyer, K., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., Holz, R. E., Yang, P., Ridgway, W. L., & Riedi, J.,(2017), The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens, 55: 502-525, doi:10.1109/TGRS.2016.2610522. [DOI:10.1109/TGRS.2016.2610522] [PMID] []
28. Baum, B., Menzel W. P., Frey, R.. Tobin, D,. Holz, R., Ackerman, S.,( 2012), MODIS Cloud Top Property Refinements for Collection 6, Journal of Applied Meteorology and Climatology, 51: 1145-1163, doi: 10.1175/JAMC-D-11-0203.1 [DOI:10.1175/JAMC-D-11-0203.1]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)