Volume 25, Issue 78 (9-2025)                   jgs 2025, 25(78): 220-237 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rodsarabi M, Baaghideh M, Entezari A, mayvaneh F. (2025). Thermal Comfort in Educational Buildings Case Study of a school-Sabzevar. jgs. 25(78), 220-237. doi:10.61186/jgs.25.78.7
URL: http://jgs.khu.ac.ir/article-1-4237-en.html
1- Hakim Sabzevari University., Khorasan Razavi, Tohidshahr, Hakim Sabzevari University, Faculty of Geography and Environmental Sciences
2- Hakim Sabzevari University., Khorasan Razavi, Tohidshahr, Hakim Sabzevari University, Faculty of Geography and Environmental Sciences , entezari@hsu.ac.ir
Abstract:   (2838 Views)
To assess thermal comfort conditions in classrooms, a field study was conducted in Sabzevar. The thermal sensations reported by students regarding classroom conditions were documented at various times throughout the day during the 2009–2010 academic year across multiple classes. temperature and humidity data within the classrooms were recorded simultaneous using a data logger. To analyze differences, both ANOVA and the Kruskal-Wallis test were employed. The findings indicated that the geographical orientation and floor level of the classrooms did not significantly influence temperature and humidity levels. In contrast, significant hourly variations in these parameters were observed. Overall, reports of cooling sensations were more prevalent than those of heating sensations (24% vs. 12%). Thermal sensation exhibited considerable variation across different months, with October recording the lowest frequency of thermal comfort sensations. In all months except October, students expressed a preference for "heating." Although the performance of the heating system was deemed adequate, its operational schedule should be modified to commence closer to the beginning of morning classes in order to mitigate substantial energy waste. While temperature and humidity within the classrooms did not present significant monthly variations, students' thermal sensations varied markedly between months. This suggests that thermal sensation is influenced by factors beyond mere physical characteristics (temperature and humidity). In addition to climatic parameters, individual characteristics such as sex, age, weight, height, clothing, and activity level also play a significant role in shaping perceptions of thermal comfort. 
Full-Text [PDF 1857 kb]   (8 Downloads)    
Type of Study: Research | Subject: climatology

References
1. چهرازی, غ., دهقان, ن., صنایعیان, ه., & گندمکار, ا. (2021). تعیین محدودۀ آسایش حرارتی در فضای باز دبستان‌های دخترانۀ شهر اصفهان. صفه, 31(3), 43-58. doi:10.52547/sofeh.31.3.43 [DOI:10.52547/sofeh.31.3.43]
2. حیدری, ش. (1393). سازگاری حرارتی در معماری نخستین قدم در صرف‌جویی مصرف انرژی (Vol. 1). تهران: موسسه چاپ و انتشارات دانشگاه تهران.
3. زارع مهذبیه, آ., حیدری, ش., & شاهچراغی, آ. (1398). بررسی کیفیت محیطی داخلی خانه های قاجاری شیراز با تاکید بر آسایش حرارتی و نور روز (نمونه موردی: خانه نعمتی). معماری اقلیم گرم و خشک, 7.
4. فتاحی معصوم, آ. س., اکبری, ا., & طبسی, م. (1399). شناسایی تاثیرات عوامل اقلیمی بر معماری مدرسه غیاثیه خرگرد خواف. پژوهشنامه خراسان بزرگ, 10
5. Benedict, F. G., & Carpenter, T. M. (1910). The metabolism and energy transformations of healthy man during rest: Carnegie institution of Washington.
6. Fanger, P. O. (1970). Thermal comfort. Analysis and applications in environmental engineering. Thermal comfort. Analysis and applications in environmental engineering.
7. Ghermezi, M., & Nasrollahi, F. (2019). The Effect of Building Typology on the Reduction of Energy Consumption in Esfahan Schools. Iranian Journal of Energy, 22(2), 5-21.
8. Heracleous, C., & Michael, A. (2020). Thermal comfort models and perception of users in free-running school buildings of East-Mediterranean region. Energy and Buildings, 215, 109912. [DOI:10.1016/j.enbuild.2020.109912]
9. Kim, J., & de Dear, R. (2018). Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students. Building and Environment, 127, 13-22. [DOI:10.1016/j.buildenv.2017.10.031]
10. Kunst, A. E., Groenhof, F., & Mackenbach, J. P. (1994). The association between two windchill indices and daily mortality variation in The Netherlands. American Journal of public health, 84(11), 1738-1742. [DOI:10.2105/AJPH.84.11.1738] [PMID] []
11. Mendell, M. J., & Heath, G. A. (2005). Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor air, 15(1), 27-52. [DOI:10.1111/j.1600-0668.2004.00320.x] [PMID]
12. Merabtine, A., Maalouf, C., Hawila, A. A. W., Martaj, N., & Polidori, G. (2018). Building energy audit, thermal comfort, and IAQ assessment of a school building: A case study. Building and Environment, 145, 62-76. [DOI:10.1016/j.buildenv.2018.09.015]
13. Nasrollahi, N., Knight, I., & Jones, P. (2007). Surveyed thermal comfort in Iranian offices. Build Environ, 1(10).
14. Olgay, V., & Olgay, A. (1963). Design with climate. Bioclimatic Approach to Architectural Regionalism, New Jersey.
15. Papazoglou, E., Moustris, K. P., Nikas, K.-S. P., Nastos, P. T., & Statharas, J. C. (2019). Assessment of human thermal comfort perception in a non-air-conditioned school building in Athens, Greece. Energy Procedia, 157, 1343-1352. [DOI:10.1016/j.egypro.2018.11.299]
16. Pourshaghaghy, A., & Omidvari, M. (2012). Examination of thermal comfort in a hospital using PMV-PPD model. Applied ergonomics, 43(6), 1089-1095. [DOI:10.1016/j.apergo.2012.03.010] [PMID]
17. Rodríguez, C. M., Coronado, M. C., & Medina, J. M. (2021). Thermal comfort in educational buildings: The Classroom-Comfort-Data method applied to schools in Bogotá, Colombia. Building and Environment, 194, 107682. [DOI:10.1016/j.buildenv.2021.107682]
18. Teli, D., Bourikas, L., James, P. A., & Bahaj, A. S. (2017). Thermal performance evaluation of school buildings using a children-based adaptive comfort model. Procedia environmental sciences, 38, 844-851. [DOI:10.1016/j.proenv.2017.03.170]
19. Ter Mors, S., Hensen, J. L., Loomans, M. G., & Boerstra, A. C. (2011). Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts. Building and Environment, 46(12), 2454-2461. [DOI:10.1016/j.buildenv.2011.05.025]
20. Trebilcock, M., Soto-Muñoz, J., & Piggot-Navarrete, J. (2020). Evaluation of thermal comfort standards in office buildings of Chile: Thermal sensation and preference assessment. Building and Environment, 183, 107158. [DOI:10.1016/j.buildenv.2020.107158]
21. Trebilcock, M., Soto-Muñoz, J., Yañez, M., & Figueroa-San Martin, R. (2017). The right to comfort: A field study on adaptive thermal comfort in free-running primary schools in Chile. Building and Environment, 114, 455-469. [DOI:10.1016/j.buildenv.2016.12.036]
22. Verma, P. K., & Netam, N. (2020). A case study on thermal comfort analysis of school building. Materials Today: Proceedings, 28, 2501-2504. [DOI:10.1016/j.matpr.2020.04.829]
23. Wyon, D. P. (2004). The effects of indoor air quality on performance and productivity. Indoor air, 14, 92-101. [DOI:10.1111/j.1600-0668.2004.00278.x] [PMID]
24. Zomorodian, Z. S., Aminian, S., & Tahbaz, M. (2017). Thermal Comfort Assessment in Classrooms in the Hot and Dry Climate of Iran Field Survey in a Primary School of Kashan. Honar-Ha-Ye-Ziba: Memary Va Shahrsazi, 21(4), 17-28.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)