Sirma Zeynep Alparslan Gok, Osman Palanci, Mehmet Onur Olgun,
Volume 1, Issue 1 (5-2014)
Abstract
The Shapley value, one of the most common solution concepts of cooperative game theory is defined and axiomatically characterized in different game-theoretic models. Certainly, the Shapley value can be used in interesting sharing cost/reward problems in the Operations Research area such as connection, routing, scheduling, production and inventory situations. In this paper, we focus on the Shapley value for cooperative games, where the set of players is finite and the coalition values are interval grey numbers. The central question in this paper is how to characterize the grey Shapley value. In this context, we present two alternative axiomatic characterizations. First, we characterize the grey Shapley value using the properties of efficiency, symmetry and strong monotonicity. Second, we characterize the grey Shapley value by using the grey dividends.