Dear users,
This is our new website
(we are launching the new one in order to improve our communication and provide better services to the editors and authors. So we will upload all data soon).


Please click here to visit our current website, and also to submit your paper
:
 
www.ijsom.com 


 Thanks for your patience during relocation.

Feel free to contact us via info@ijsom.com and ijsom.info@gmail.com

   [Home ] [Archive]    
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Indexing Databases

AWT IMAGE
AWT IMAGE

AWT IMAGE

AWT IMAGE

AWT IMAGE

AWT IMAGE

AWT IMAGE

AWT IMAGE

AWT IMAGE

..
:: Search published articles ::
Showing 2 results for Textile

Muhammad Nazam, Jiuping Xu, Zhimiao Tao, Jamil Ahmad, Muhammad Hashim,
Volume 2, Issue 1 (5-2015)
Abstract

In the emerging supply chain environment, green supply chain risk management plays a significant role than ever. Risk is an inherent uncertainty and has tendency to disrupt the typical green supply chain management (GSCM) operations and eventually reduce the success rate of industries. In order to mitigate the consequences, a fuzzy multi-criteria group decision making modeling (FMCGDM) which could evaluate the potential risks in the context of (GSCM) is needed from the industrial point of view. Therefore, this research proposes a combined fuzzy analytical hierarchy process (AHP) to calculate the weight of each risk criterion and sub-criterion and technique for order performance by similarity to ideal solution (TOPSIS) methodology to rank and assess the risks associated with implementation of (GSCM) practices under the fuzzy environment. The proposed fuzzy risk-oriented evaluation model is applied to a practical case of textile manufacturing industry. Finally, the proposed model helps the researchers and practitioners to understand the importance of conducting appropriate risk assessment when implementing green supply chain initiatives.
Houssem Felfel, Omar Ayadi, Fawzi Masmoudi,
Volume 2, Issue 3 (11-2015)
Abstract

In this study, a new stochastic model is proposed to deal with a multi-product, multi-period, multi-stage, multi-site production and transportation supply chain planning problem under demand uncertainty. A two-stage stochastic linear programming approach is used to maximize the expected profit. Decisions such as the production amount, the inventory level of finished and semi-finished product, the amount of backorder and the quantity of products to be transported between upstream and downstream plants in each period are considered. The robustness of production supply chain plan is then evaluated using statistical and risk measures. A case study from a real textile and apparel industry is shown in order to compare the performances of the proposed stochastic programming model and the deterministic model.

Page 1 from 1     

International Journal of Supply and Operations Management International Journal of Supply and Operations Management
Persian site map - English site map - Created in 0.09 seconds with 30 queries by YEKTAWEB 4666