Volume 25, Issue 78 (9-2025)                   jgs 2025, 25(78): 130-157 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohammadi R, saligheh M, Naserzadeh M H, Akbari M. (2025). An analysis of cyclonic dominant patterns on cold period precipitation in the mid-western of Iran. jgs. 25(78), 130-157. doi:10.61186/jgs.25.78.2
URL: http://jgs.khu.ac.ir/article-1-3935-en.html
1- Ph.D. student in climatology, Kharazmi University, std_rastegar365@khu.ac.ir , std_rastegar365@khu.ac.ir
2- Associated Professor of climatology, kharazmi University, Tehran, Iran ., saligheh@khu.ac.ir
3- Assistant Professor of climatology, kharazmi University, Tehran, Iran ., nasserzadeh@khu.ac.ir
4- Associated Professor of climatology, kharazmi University, Tehran, Iran ., mehryakbary@khu.ac.ir
Abstract:   (5433 Views)
Extratropical cyclones, characterized by their frequency, duration, and intensity, serve as the primary drivers of mid- and high-latitude precipitation across the Mediterranean during the winter and autumn months. For this research, climatic variables obtained from the ECMWF network, featuring a temporal resolution of 6 hours and a spatial resolution of 0.25° × 0.25°, spanning from 1979 to 2016, were utilized. Additionally, precipitation data from four basin stations sourced from the Asfezari database for the same period were analyzed. Initially, geopotential height, temperature, humidity, and jet stream data for rainy days were extracted using MATLAB. Subsequently, a cyclonic center extraction algorithm was applied to identify cyclonic centers from the geopotential height data, based on the conditions that the geopotential height is at a minimum and the geopotential gradient is at a maximum. From the geopotential height matrix of rainy days (361×441×498), four distinct atmospheric patterns were identified through cluster analysis. The temporal and spatial frequency of these patterns, as well as the average temperature of cyclonic centers, were analyzed for the cold season months. The results indicated that the first pattern, identified as the Mediterranean trough pattern, is the most frequent, occurring 42% of the time. This pattern is characterized by the presence of a high-level system acting as a barrier, which deepens the low-level Mediterranean system and extends its axis toward the Red Sea. The interaction between low-level and high-level systems enhances instability, resulting in the highest precipitation levels among the identified patterns. Conversely, the fourth pattern, termed the western wind trough pattern, exhibits the lowest frequency at 10%. This pattern is characterized by a trough over the Caspian Sea; however, a high-level system in the southern region inhibits the entry of low-level systems, thereby confining cyclonic activity to the northern portion of the study area. Consequently, the isobars in the northern region assume a more orbital configuration, leading to a decreased influx of cyclones and, as a result, lower precipitation amounts compared to the other patterns. The analysis further revealed that cold-core cyclones accounted for 60% of occurrences in winter and 40% in autumn, while hot-core cyclones constituted 62% in winter and 38% in autumn. Notably, the frequency of hot-core cyclones increased relative to cold-core cyclones in winter, whereas an inverse trend was observed in autumn. Over the past decade, both the frequency and intensity of cyclones have diminished compared to the preceding two decades. In terms of cyclogenesis locations, the western part of the study area has consistently emerged as the most active region. Moreover, cyclogenesis activity exhibits a gradual increase from autumn to winter as the cold season progresses. These findings underscore the dynamic nature of extratropical cyclones and their significant role in shaping precipitation patterns across the Mediterranean region.
 
Full-Text [PDF 3499 kb]   (14 Downloads)    
Type of Study: Research | Subject: climatology

References
1.  ایران‌نژاد، پرویز؛ احمدی گیوی، فرهنگ؛ محمد نژاد، علیرضا (1388) اثر مراکز چرخندزایی مدیترانه بر بارش سالانه ایران در دوره 1960-2002، مجله ژئوفیزیک ایران، دوره 3، شماره 1، صفحه 91-105.
2.  بیات، علی؛ سلیقه، محمد؛ اکبری، مهری (1396) اقلیم‌شناسی سیکلون های باران‌زای زمستانه ایران، مجله‌ تحلیل فضایی مخاطرات محیطی، دوره 4، شماره 2، صفحه 1-18.‎
3. ‌ بیاتی خطیبی، مریم؛ جهانبخش اصل، سعید؛ فرشی فروغ، جواد (1378) تجزیه‌وتحلیل سینوپتیکی بارش‌های منطقه‌ شمال غرب ایران، مجله‌ دانش کشاورزی، دوره 9، شماره 1، صفحه 55-70.
4.  حیدری، محمدامین؛ خوش‌اخلاق، فرامرز (1397) واکاوی اثر گرمایش جهانی بر منطقه کم‌فشار سودان ـ دریای سرخ و ارتباط آن با بارش‌های جنوب غرب ایران، مجله‌ جغرافیا و برنامه‌ریزی محیطی، دوره 29 شماره 2، صفحه 91-112.
5.  خسروی، محمود؛ موحدی، سعید؛ هاشمی عنا، سید کرامت؛ حیدری، بهروز (1391) بررسی همدیدی کنش‌های چرخندی ترازهای مختلف جوی ایران در سال 1369، مجله جغرافیا و توسعه، دوره 12، شماره 35، صفحه 83-95.
6.  علیجانی، بهلول (1374) آب‌وهوای ایران، تهران، انتشارات دانشگاه پیام نور.
7.  علیجانی، بهلول؛ رضایی، محمد؛ جعفری، فرزانه؛ پژوه، فرشاد (1394). تغییرپذیری ارتفاع ژئوپتانسیل تراز 500 هکتوپاسکال و نقش آن در نوسانات دمای ماه ژانویه‌ی ایران، فصلنامه مطالعات جغرافیایی مناطق خشک، دوره 5، شماره 20، صفحه 34-45.‎
8.  کاوسی، رضا؛ موحدی، سعید (1393) بررسی همدیدی کنش‌های چرخندی بر روی ایران در سال 1371، فصلنامه تحقیقات جغرافیایی، دوره 29، شماره 115،، صفحه 97-112.
9.  مارتین، جاناتان (2006) دینامیک جو در عرض‌های میانه، برگردان سید ابوالفضل مسعودیان، انتشارات دانشگاه اصفهان.
10.  یارنال، برنت (1993) اقلیم‌شناسی همدید و کاربرد آن در مطالعات محیطی، برگردان سید ابوالفضل مسعودیان، انتشارات دانشگاه اصفهان.
11.  Almazroui, M. & Awad, A. M. (2016). Synoptic regimes associated with the eastern Mediterranean wet season cyclone tracks. Atmospheric Research, 180, 92-118. [DOI:10.1016/j.atmosres.2016.05.015]
12.  Alpert, P, Neeman, B. U, & Shay-El, Y. (1990). Intermonthly variability of cyclone tracks in the Mediterranean. Journal of Climate, 3(12), 1474-1478. https://doi.org/10.1175/1520-0442(1990)003<1474:IVOCTI>2.0.CO;2 [DOI:10.1175/1520-0442(1990)0032.0.CO;2]
13.  Blender, R, & Schubert, M. (2000). Cyclone tracking in different spatial and temporal resolutions. Monthly Weather Review, 128(2), 377-384. https://doi.org/10.1175/1520-0493(2000)128<0377:CTIDSA>2.0.CO;2 [DOI:10.1175/1520-0493(2000)1282.0.CO;2]
14.  Catto, J. L. (2016). Extratropical cyclone classification and its use in climate studies. Reviews of Geophysics, 54(2), 486-520. [DOI:10.1002/2016RG000519]
15.  Chen, S. J, Kuo, Y. H, Zhang, P. Z, & Bai, Q. F. (1991). Synoptic climatology of cyclogenesis over East Asia, 1958-1987. Monthly Weather Review, 119(6), 1407-1418. https://doi.org/10.1175/1520-0493(1991)119<1407:SCOCOE>2.0.CO;2 [DOI:10.1175/1520-0493(1991)1192.0.CO;2]
16.  Flocas, H. A., Simmonds, I., Kouroutzoglou, J., Keay, K., Hatzaki, M., Bricolas, V., & Asimakopoulos, D. (2010). On cyclonic tracks over the eastern Mediterranean. Journal of Climate, 23(19), 5243-5257. [DOI:10.1175/2010JCLI3426.1]
17.  Guijarro, J. A, Jansa, A, & Campins, J. (2006). Time variability of cyclonic geostrophic circulation in the Mediterranean. Advances in Geosciences, 7, 45-49. [DOI:10.5194/adgeo-7-45-2006]
18.  Jung, T, Gulev, S. K, Rudeva, I, & Soloviov, V. (2006). Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 132(619), 1839-1857. [DOI:10.1256/qj.05.212]
19.  Klein, W. H. (1958). The frequency of cyclones and anticyclones in relation to the mean circulation. Journal of Meteorology, 15(1), 98-102. https://doi.org/10.1175/1520-0469(1958)015<0098:TFOCAA>2.0.CO;2 [DOI:10.1175/1520-0469(1958)0152.0.CO;2]
20.  Lim, E. P, & Simmonds, I. (2007). Southern Hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979-2001. Journal of Climate, 20(11), 2675-2690. [DOI:10.1175/JCLI4135.1]
21.  Lionello, P, Bhend, J, Buzzi, A, Della-Marta, P. M, Krichak, S. O, Jansa, A. & Trigo, R. (2006). Cyclones in the Mediterranean region: climatology and effects on the environment. In Developments in earth and environmental sciences (Vol. 4, pp. 325-372). Elsevier.‌ [DOI:10.1016/S1571-9197(06)80009-1]
22.  Lukancic, K. (2016). Sensitivity of Strong Extratropical Cyclones to Large-scale Climate Variability in the Contiguous United States (Doctoral dissertation, Southern Illinois University Carbondale).
23.  Maheras, P, Flocas, H. A, Patrikas, I, & Anagnostopoulou, C. (2001). A 40 year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(1), 109-130. [DOI:10.1002/joc.599]
24.  Michaelis, A. C, Willison, J, Lackmann, G. M, & Robinson, W. A. (2017). Changes in winter North Atlantic extratropical cyclones in high-resolution regional pseudo-global warming simulations. Journal of Climate, 30(17), 6905-6925. [DOI:10.1175/JCLI-D-16-0697.1]
25.  Nielsen, J. W, & Dole, R. M. (1992). A survey of extratropical cyclone characteristics during GALE. Monthly Weather Review, 120(7), 1156-1168.‌ https://doi.org/10.1175/1520-0493(1992)120<1156:ASOECC>2.0.CO;2 [DOI:10.1175/1520-0493(1992)1202.0.CO;2]
26.  Oort, A. H, & Vonder Haar, T. H. (1976). On the observed annual cycle in the ocean-atmosphere heat balance over the Northern Hemisphere. Journal of Physical Oceanography, 6(6), 781-800. https://doi.org/10.1175/1520-0485(1976)006<0781:OTOACI>2.0.CO;2 [DOI:10.1175/1520-0485(1976)0062.0.CO;2]
27.  Radinović, D. (1987). Mediterranean cyclones and their influence on the weather and climate. World Meteorological Organization.
28.  Schemm, S, & Sprenger, M. (2015). Frontal‐wave cyclogenesis in the North Atlantic-a climatological characterisation. Quarterly Journal of the Royal Meteorological Society, 141(693), 2989-3005. [DOI:10.1002/qj.2584]
29.  Schemm, S, Sprenger, M, & Wernli, H. (2018). When during their life cycle are extratropical cyclones attended by fronts. Bulletin of the American Meteorological Society, 99(1), 149-165. [DOI:10.1175/BAMS-D-16-0261.1]
30.  Schultz, D. M, Bosart, L. F, Colle, B. A, Davies, H. C, Dearden, C, Keyser, D, ... & Winters, A. C. (2019). Extratropical Cyclones: A Century of Research on Meteorology's Centerpiece. Meteorological Monographs, 59, 16-1. [DOI:10.1175/AMSMONOGRAPHS-D-18-0015.1]
31.  Simmonds, I, & Keay, K. (2000). Mean Southern Hemisphere extratropical cyclone behavior in the 40-year NCEP-NCAR reanalysis. Journal of Climate, 13(5), 873-885. https://doi.org/10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2 [DOI:10.1175/1520-0442(2000)0132.0.CO;2]
32.  Simmonds, I, Burke, C, & Keay, K. (2008). Arctic climate change as manifest in cyclone behavior. Journal of Climate, 21(22), 5777-5796.‌ [DOI:10.1175/2008JCLI2366.1]
33.  Trigo, I. F, Davies, T. D, & Bigg, G. R. (1999). Objective climatology of cyclones in the Mediterranean region. Journal of climate, 12(6), 1685-1696. https://doi.org/10.1175/1520-0442(1999)012<1685:OCOCIT>2.0.CO;2 [DOI:10.1175/1520-0442(1999)0122.0.CO;2]
34.  Trigo, R. M, & DaCamara, C. C. (2000). Circulation weather types and their influence on the precipitation regime in Portugal. International Journal of Climatology: A Journal of the Royal Meteorological Society, 20(13), 1559-1581. https://doi.org/10.1002/1097-0088(20001115)20:13<1559::AID-JOC555>3.0.CO;2-5 [DOI:10.1002/1097-0088(20001115)20:133.0.CO;2-5]
35.  Wernli, H, & Schwierz, C. (2006). Surface cyclones in the ERA-40 dataset (1958-2001). Part I: Novel identification method and global climatology. Journal of the atmospheric sciences, 63(10), 2486-2507. [DOI:10.1175/JAS3766.1]
36.  Whittaker, L. M, & Horn, L. H. (1984). Northern Hemisphere extratropical cyclone activity for four mid‐season months. Journal of Climatology, 4(3), 297-310. [DOI:10.1002/joc.3370040307]
37.  Xia, L, & Zhou, Y. (2018). Tracking Jianghuai Cyclones in China and Their Climate Characteristics. Atmosphere, 9(9), 341.‌ [DOI:10.3390/atmos9090341]
38.  Yanase, W, & Niino, H. (2015). Idealized numerical experiments on cyclone development in the tropical, subtropical, and extratropical environments. Journal of the Atmospheric Sciences, 72(9), 3699-3714.‌ [DOI:10.1175/JAS-D-15-0051.1]
39.  Zhang, Y. C, & Rossow, W. B. (1997). Estimating meridional energy transports by the atmospheric and oceanic general circulations using boundary fluxes. Journal of climate, 10(9), 2358-2373. https://doi.org/10.1175/1520-0442(1997)010<2358:EMETBT>2.0.CO;2 [DOI:10.1175/1520-0442(1997)0102.0.CO;2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License
This work is licensed under a Creative Commons — Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)